Climate Change and Greenhouse Gas Emissions

Chhemendra Sharma

Radio and Atmospheric Science Division National Physical Laboratory Dr. K.S. Krishnan Marg, New Delhi-110012

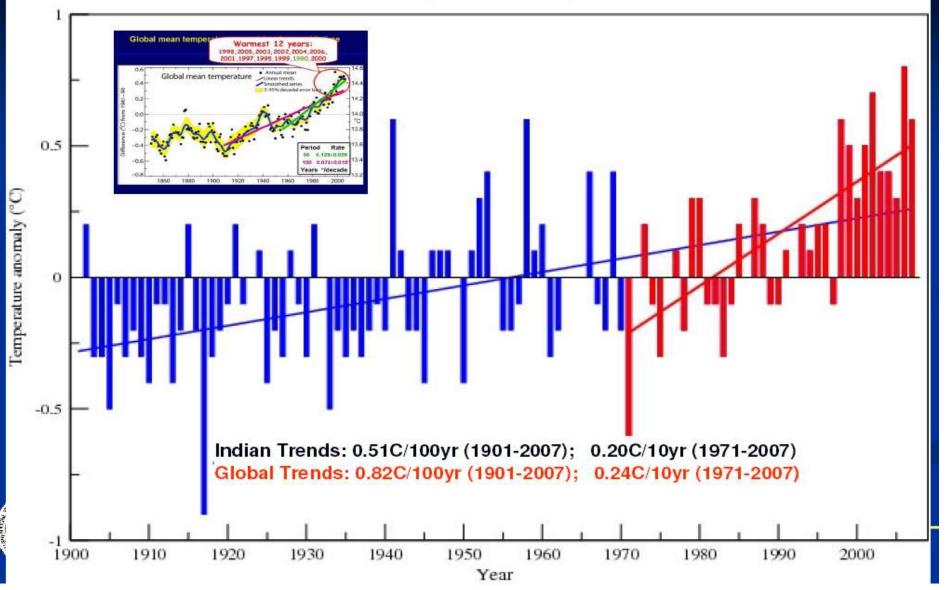
Awareness and Capacity Building on Sustainable Energy (ACBSE-2010) IIC, New Delhi, 6 August 2010

Layout of presentation

• Background

GHG Emission Inventories

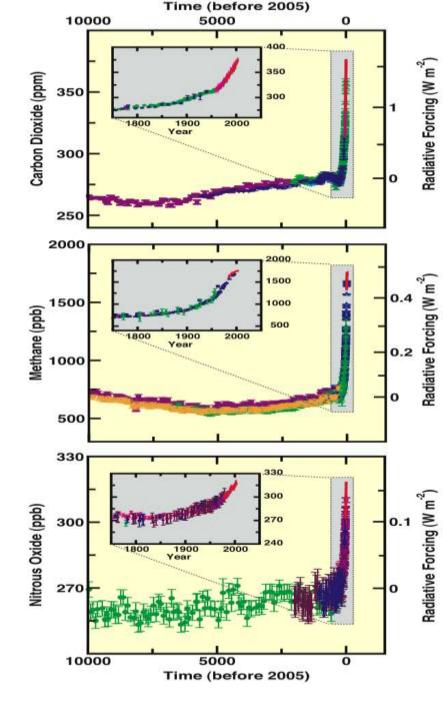
Efforts for Reduction of Uncertainties


• Emission Inventories and Climate Change Modeling

Direct Observations of Global warming

Warming of the climate system is unequivocal, as is now evident from observations of increases in global average air and ocean temperatures, widespread melting of snow and ice, and rising global mean sea level.

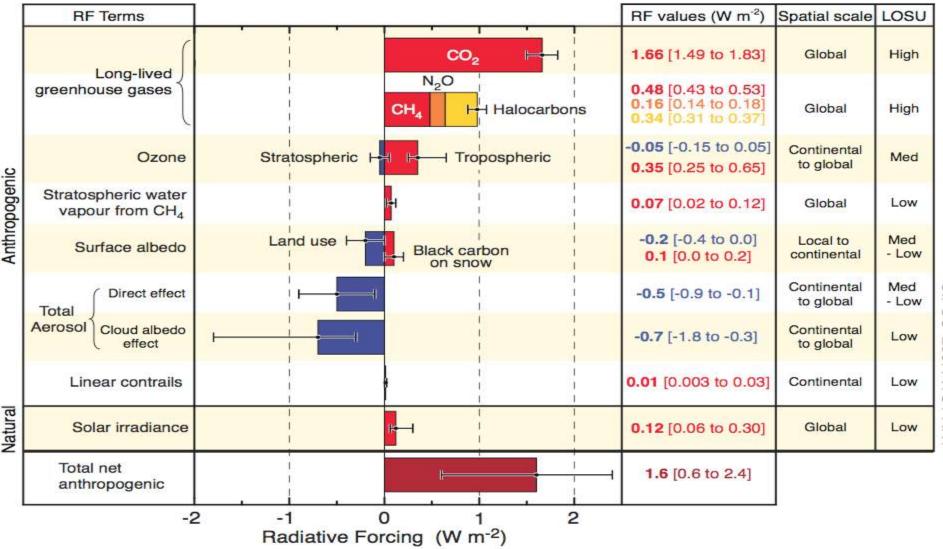
(Base: 1961-1990)


Source: Krishna Kumar, NATCOM 2009

Human and Natural Drivers of Climate Change

CO₂, CH₄ and N₂O Concentrations

far exceed pre-industrial values
increased markedly since 1750 due to human activities


Relatively little variation before the industrial era

IPCC AR4

Global-average radiative forcing estimates and ranges

Radiative Forcing Components

©IPCC 2007: WG1-AR4

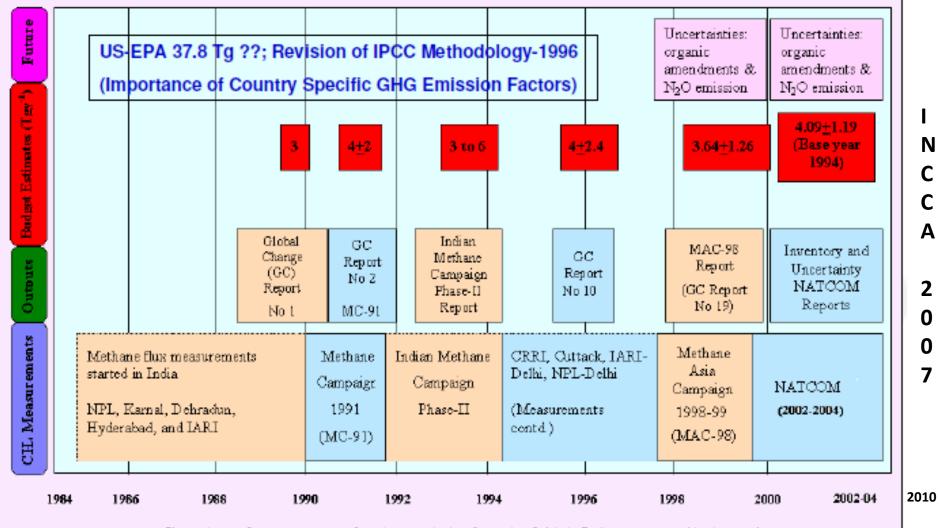
Climate Change Assessments in Retrospect

<u>Global</u>

- Emergence of climate change as an issue, 1988
- United Nations Framework Convention on Climate Change, 1992
- IPCC Assessments
 - Science
 - Impacts, Vulnerability & Adaptation
 - Mitigation
 - (1992, 1997, 2002, 2007)

India

- ADB study, 1994 & 1998
 - Focus- Impacts of Climate variability & Observed Climate on agriculture & sea level rise, GHG inventory 1990 & Project based assessments of Mitigation potential
- NATCOM I, 2004

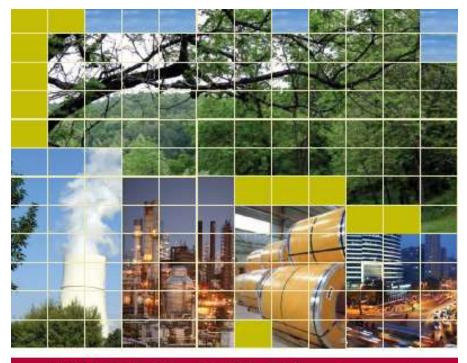

Focus – Climate change scenarios, CC impacts at sectoral levels, GHG inventory for base year 1994 & development of country specific EFs

Other isolated studies by researchers

Source: S. K. Sharma, NATCOM 2009

Greenhouse Gas Emission Inventories

Data Quality and International Traceability through NMI - CH₄ from Rice example


Chronology of measurements of methane emission from rice fields in India, reports and budget estimates

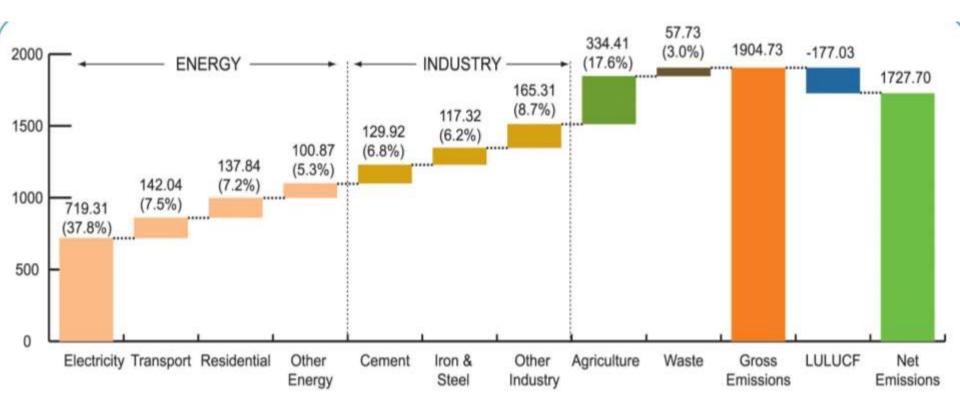
Initial National greenhouse gas inventories of anthropogenic emissions by sources and removals by sinks of all greenhouse gases not controlled by the Montreal Protocol – NATCOM I

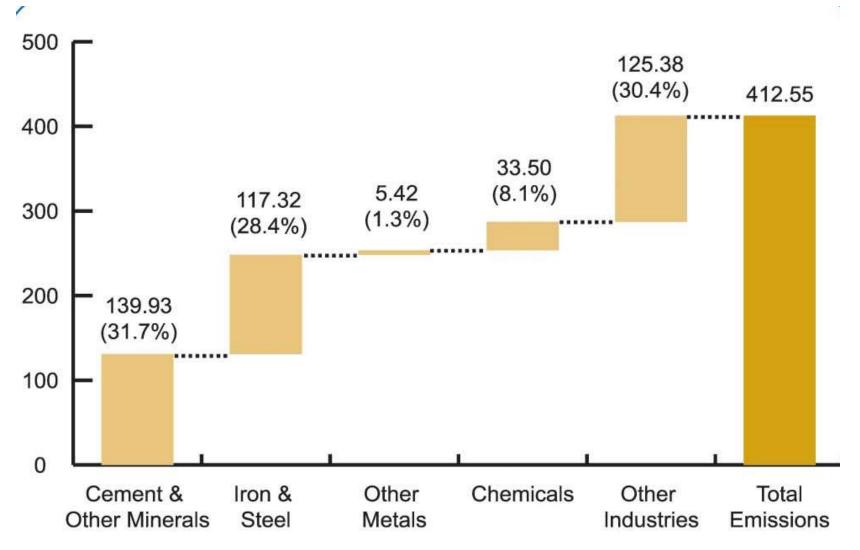
GHG source and sink categories (Gg per year)	CO ₂ emissions	CO ₁ removals	CH4	N ₂ O	CO ₂ eq. emissions*
Total (Net) National Emission	817023	23533	18083	178	1228540
1.10 5	170.170		2896		743810
1. All Energy Fuel combustion	679470		2890	11.4	743810
Energy and transformation industries	353518			4.9	355037
	149806			2.8	150674
Industry Transport	79880		9	0.7	80286
Commercial/institutional	20509		2	0.2	20571
Residential	43794			0.4	43918
All other sectors	31963			0.4	32087
Biomass burnt for energy	31903		1636	2.0	34976
Fugitive Fuel Emission			1050	-4.9	34970
Oil and natural gas system			601		12621
Coal mining			650		12621
2. Industrial Processes	99878	_	2	9	102710
3. Agriculture	99070		14175	151	344485
Enteric Fermentation			8972	1.51	188412
Manure Management			946	1	20176
Rice Cultivation			4090		85890
Agricultural crop residue			167	4	4747
Emission from Soils			107	146	45260
4. Land use, Land-use change and Forestry	37675	23533	6.5	0.04	14292
Changes in forest and other woody biomass stock	560 (MR)	14252		1970	(14252)
Forest and grassland conversion	17987	0.000			17987
Trace gases from biomass burning			6.5	0.04	150
Uptake from abandonment of managed lands		9281			(9281)
Emissions and removals from soils	19688				19688
5. Other sources as appropriate and to the		_	-	-	
extent possible					0
5a. Waste			1003	7	23233
Municipal solid waste disposal			582	1 P	12222
Domestic waste water			359		7539
Industrial waste water			62		1302
Human sewage				7	2170
5b. Emissions from Bunker fuels "	3373			-	3373
Aviation	2880				2880
Navigation	493				493

Not counted in the national totals.

'Converted by using GWP indexed multipliers of 21 and 310 for converting CH, and N,O respectively.

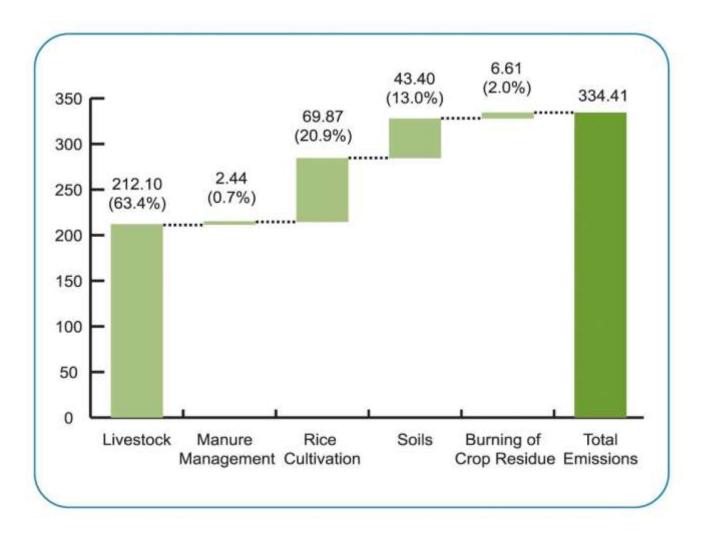
INCCA Indian Network for Climate Change Assessment


India: Greenhouse Gas Emissions 2007

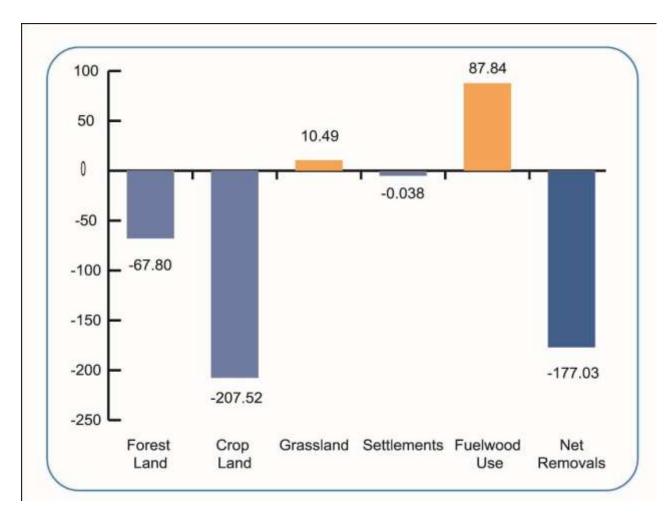

May 2010

http://www.moef.nic.in/

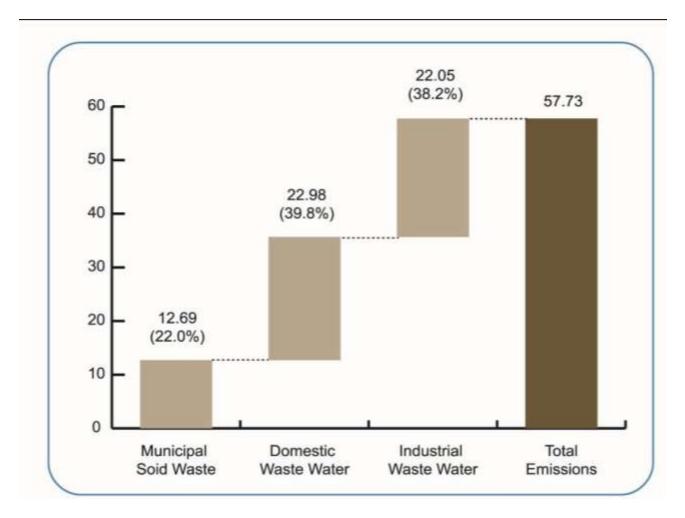
GHG Emissions by Sector 2007 (million tons of CO_2 equivalent)



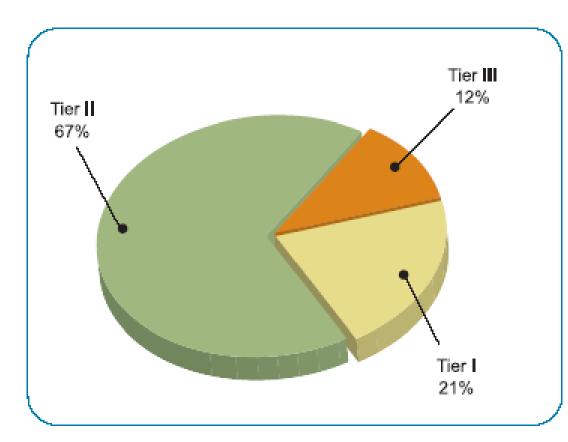
GHG emissions from Industry (million tons of CO₂ equivalent)



GHG emissions from the Agriculture sector


(million tons of CO₂ equivalent)

GHG emissions from the LULUCF sector (million tons of CO₂ eq.)

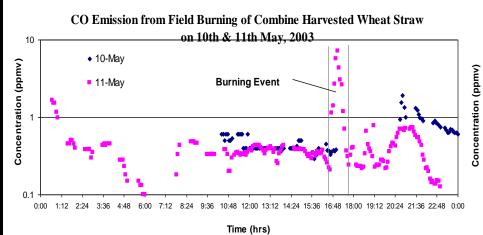

GHG emissions from Waste sector (million tons of CO₂ equivalent)

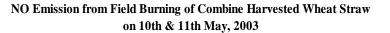
Key Results

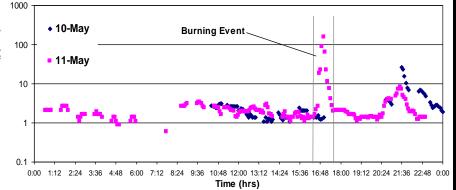
- The total net Greenhouse Gas (GHG) emissions from India in 2007 were 1727.71 million tons of CO₂ equivalent (eq) of which
 - CO₂ emissions were 1221.76 million tons;
 - CH₄ emissions were 20.56 million tons; and
 - N₂O emissions were 0.57 million tons
- GHG emissions from Energy, Industry, Agriculture, and Waste sectors constituted 58%, 22%, 17% and 3% of the net CO₂ eq emissions respectively.
- Energy sector emitted 1100.06 million tons of CO₂ eq, of which 719.31 million tons of CO₂ eq were emitted from electricity generation and 142.04 million tons of CO₂ eq from the transport sector.
- Industry sector emitted 412.55 million tons of CO₂ eq. LULUCF sector was a net sink. It sequestered 177.03 million tons of CO₂.
- India's per capita CO₂ eq emissions including LULUCF were 1.5 tons/capita in 2007.

Tiers of methodology used for 2007 GHG emission profile

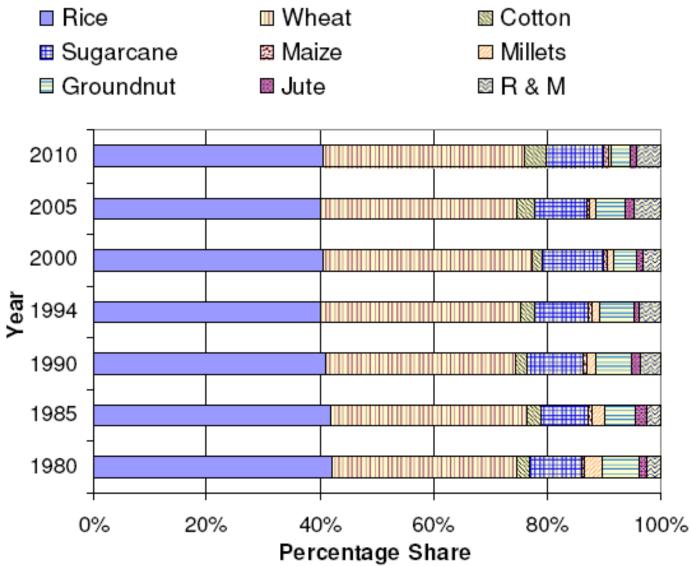
Tier I : approach employs activity data that are relatively coarse, such as nationally or globally available estimates of deforestation rates, agricultural production statistics, and global land cover maps. Tier 2 use the same methodological approach as Tier 1 but applies emission factors and activity data which are defined by the country. **Tier 3** approach uses higher order methods are used including models and inventory measurement systems tailored to address national circumstances, repeated over time, and driven by disaggregated levels.


Efforts for reduction of uncertainties in emission inventories - Examples


Assessment of trace gases, carbon and nitrogen emissions from field burning of agricultural residues in India


Sahai et. al., Nutrient Cycling in Agoecosystem, (In press - 2010)

Agricultural Residue Burning in the Farms of G B Pant University of Agriculture & Technology (Pantnagar)



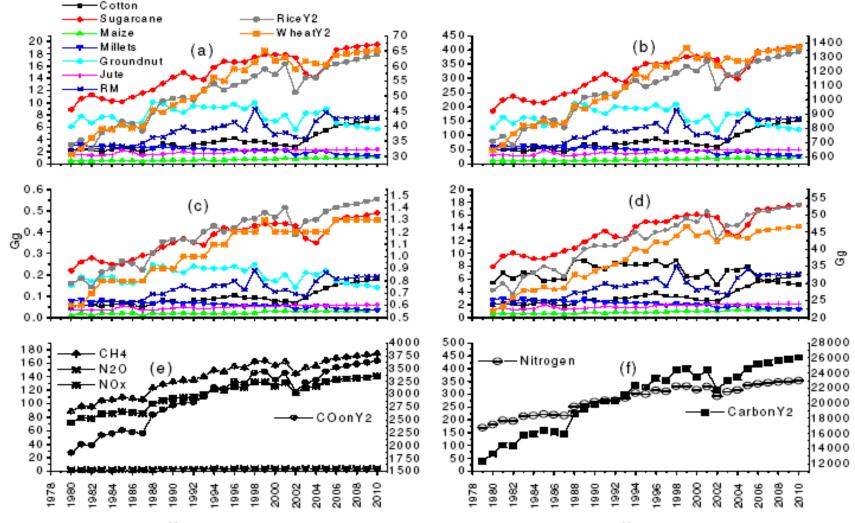
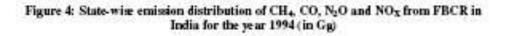
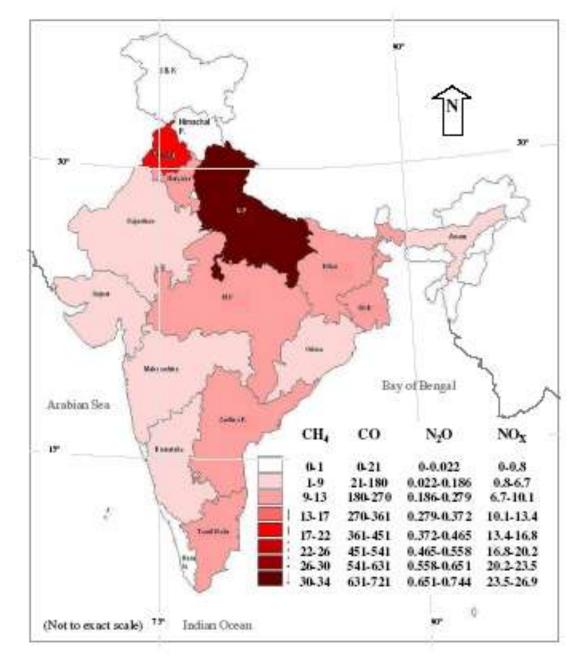


Figure 1: Shares of different crops in dry residue generation

Sahai et al. 2010


Figure 2: Crop-wise emission variation of (a) CH₄, (b) CO, (c) N₂O, (d) NO_X (a, b, c & d have same legends and emissions for rice and wheat are shown on Y2 axis); (e) trace gases emission from total of all crops; and (f) total nitrogen and carbon from all crops, between 1980 and 2010 from FBCR (Gg)

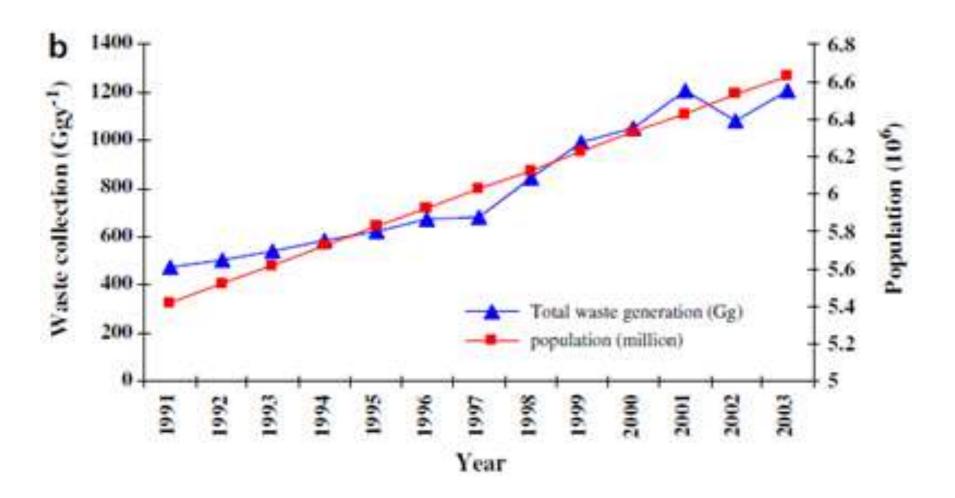


Years

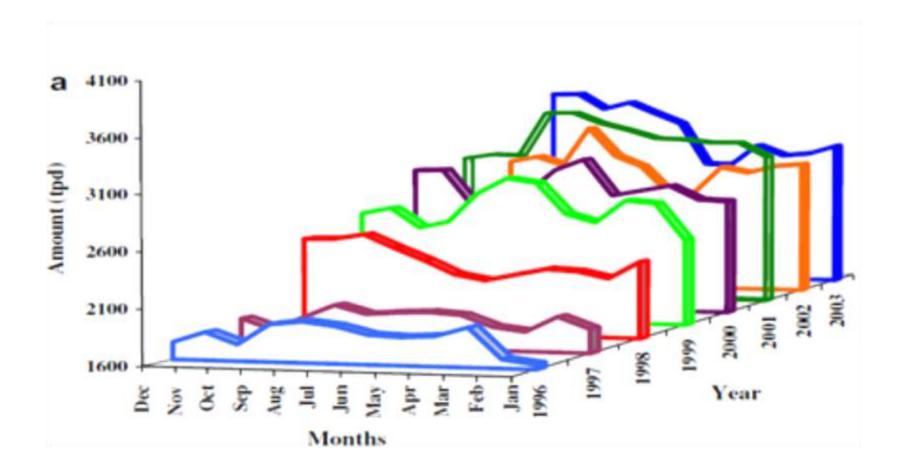
Years

Sahai et al. 2010

Sahai et al. 2010

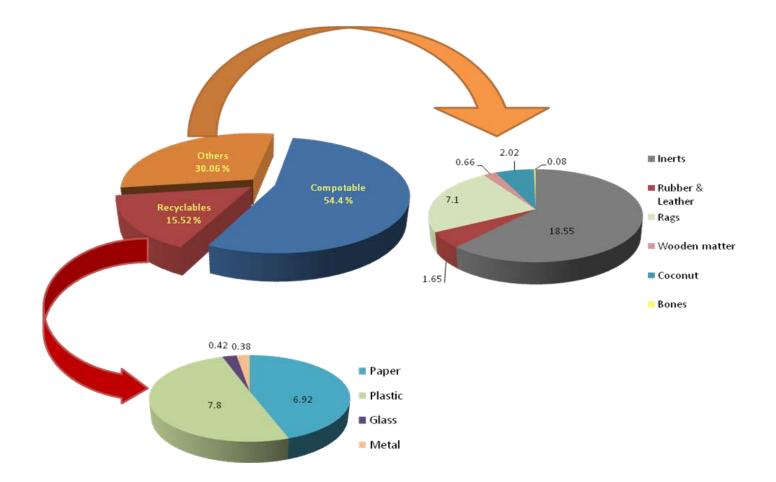

Greenhouse gas Emissions from landfills

Scenario of municipal solid waste in four mega cities


	Year	Mega-cities				
Parameter	1 001	Chennai	Delhi	Kolkata	Mumbai	
Area (km2)		174.0	148.4	187.33	437.7I	
	1981	4.28	6.22	4.13	8.23	
Population (million)	1991	5.42	8.42	II.02	12.6	
	2001	6.56	12.87	13.2	16.43	
Wests concretion (he /conits /d)	1994	0.66	0.48	0.32	0.44	
Waste generation (kg /capita/d)	1999	0.61	I.I	0.55	0.52	
Garbage pressure (tons /km2)	1999	17.529	4.042	16.548	13.708	
Waste collection (Gg per day)	1999	3.124	5.327	3.692	6	
Mada of diamonal (or)	Landfilling	100	93	100	91	
Mode of disposal (%)	Composting	-	7	-	9	

Source: CPCB 1999.

Increase in MSW and population growth in Chennai. (Source: Jha et al. 2008)


Variation in the daily MSW collection in different months from 1996–2003 in Chennai (Source: Jha et al. 2008)

Study at Delhi Landfills: Objectives

- ★ The present emission inventory estimates for Indian waste sector has mostly used IPCC default values, that may not be representative of the Indian scenario. For realistic values for Indian conditions, detailed study is required to generate country specific emission factors.
- ★ Assessment of temporal and spatial variation of GHG emissions.
- ★ Reduction of uncertainties in trace gas emission inventories from the waste sector.
- ★ Potential role of limiting factors (like, organic carbon, nitrogen, hydrogen, oxygen etc.) in influencing the GHG emissions from landfills.

Average Physical Composition of Municipal Solid Waste of Delhi, 2004-2005

Sampling & Analysis of LFGs

Thermometer for monitoring box temperature

DC fan for homogeneous mixture

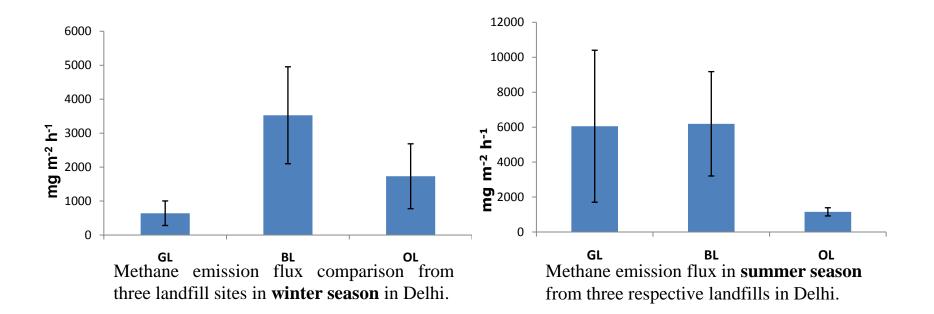
Sampling with syringe

Perspex box

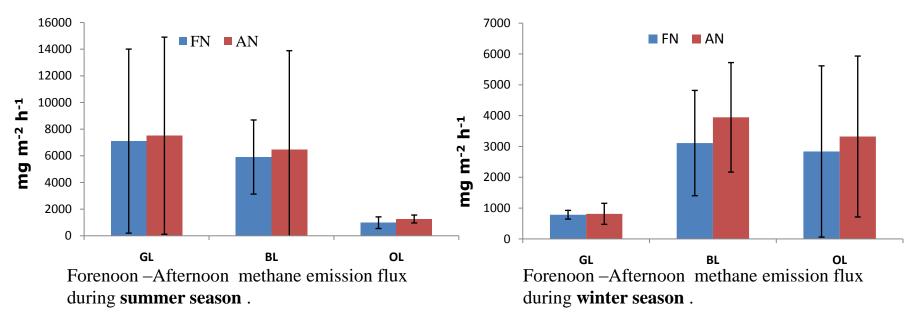
Water column for isolation

Aluminum base

Jas


linders attached

CH₄ & CO₂ gas standards

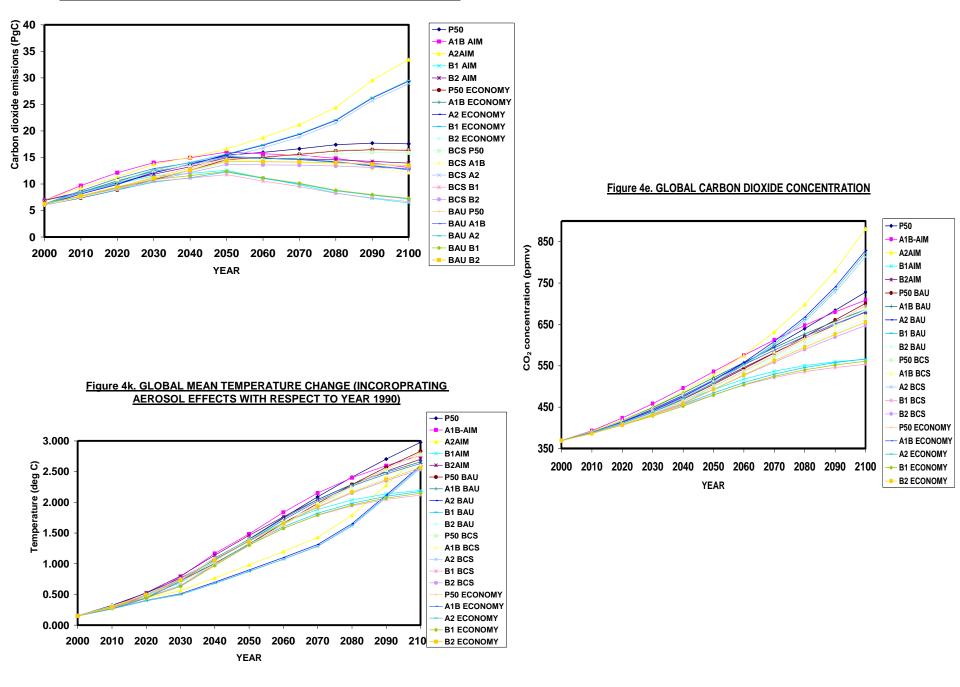

LFG sampling at Okhla dumping site

Temporal and Spatial variability

GHGs emission from landfills in Chennai :

Sampling s	ite (Chennai)	Kodungaiyu	Kodungaiyur (KDG)		l e Perugundi (PGD)		Annual Average
Year of Study		Dec. 2003	Sep. 2004	(ton/y)	Dec. 2003	Sep. 2004	(ton/y)
Study of	CH ₄ flux range (mgm ⁻² h ⁻¹)	2.4 -23.5	1.0 - 10.5	13.8	0.90 - 9.94	1.8 - 433	101.6
Methane	CH ₄ Emission (ton /y)	17.9± 9.9	9.7± 3.6		7.27 ± 2.7	196 ± 145	
Study of	CO ₂ flux range (mgm ⁻² h ⁻¹)	39 -906	106 -242	627.0	102 to 544	12.3 to 964.4	
Carbon dioxide	CO ₂ Emission (ton /y)	924.0 ± 358.0	330.0 ± 67		027.0	0.506 ± 0.123	0.560 ± 0.435
Study of	N2Oflux range (mgm ⁻² h ⁻¹)	142 - 384	6 - 460		15 - 155	2.7 -1200	
Nitrous Oxide	N2OEmission (ton/y)	0.65 ± 0.17	0.32 ± 0.02	0.49	70.20 ± 0.05	0.78 ± 0.52	0.49

Source: Jha et al. 2008


GHG Emission Inventories and Climate Change Modeling

MAGICC/SCENGEN 4.1Based Assessment of Impacts of Indian Emissions on Future Climate Scenarios

MAGICC (Model for the Assessment of Greenhouse gas Induced Climate Change) is one-dimensional model of climate which estimates the changes in global mean temperature and sea level rise. It uses a series of reduced-form models to emulate the behaviour of fully three-dimensional, dynamic GCMs.

SCENGEN (**SCEN**ario **GEN**erator) in turn uses the global-mean temperature output from MAGICC to scale up the results from 17 transient GCMs to give global and regional output of temperature and precipitation on a 5° by 5° grid.

Involves development of emission inventories of Greenhouse Gases and other trace gas species for MAGICC/SCENGEN 4.1 model runs

SCENGEN Output for Annual Mean Temperature and Annual Mean Precipitation under Default and BCS Scenario

Scenario	Change In Annual Mean Temperature	1	Change In Annual Mean Precipitation	
Default P50 2020				
BCS P50 2020				
Default P50 2050				
BCS P50 2050				
Default P50 2100				
BCS P50 2100				
	Change in Annual Mean Temp deg C Models: 4.50 BMRC98 CCC199 3.50 CCSR96 CER798 3.00 CSI266 CER798 2.50 ECH395 ECH498 2.00 GFDL90 GISS95 1.50 HAD295 HAD300 1.00 IAP_97 LMD_98 0.50 MR_96 PCM_00 0.00 WM_95 -0.50	M B C C C E G H H J M	Change in Annual Precipitation Wodels: % 18.00 SIMRC98 CCC199 15.00 CCSR96 CERF98 12.00 SIZ96 CSM.98 9.00 FDL90 GISS95 3.00 HAD295 HAD300 0.00 AP_37 LMD_98 -3.00 WNL_95 -9.00	

To conclude:

Robust GHG Emission Inventories are need of the hour for understanding the Future climate change and its impacts

.....thanks for your kind attention