An attempt in mitigating global warming through carbonic anhydrase mediated carbon sequestration

T. Satyanarayana Division of Biological Sciences & Engineering Netaji Subhas Institute of Technology (University of Delhi) Sector-3, Dwarka New Delhi-110078

ACBCCU-2018 Workshop, IIC, New Delhi, Aug. 29 – Sept. 1, 2018

GLOBAL WARMING

Increase in the average temperature of Earth's near-surface air and oceans

Global surface temperature has increased by 0.74 ± 0.18 °C in 20th century

This may rise further to 1 – 6.4 °C in 21st century, if not checked.

CONTRIBUTION TO GLOBAL WARMING

Annual Greenhouse Gas Emissions

Annual Release of CO₂ into the atmosphere: 22 billion tonnes

Global Warming: The Current Scenario

- In the past 100 years, global temperatures are the warmest at present.
- Atmospheric CO₂ has increased by 31% from preindustrial levels.
- Ice is disappearing from the Arctic Ocean and Greenland.
- If the Antarctic and the Arctic ice melts, sea levels would rise by almost 11 meters.

Global Warming: The Consequences

Some anticipated effects include:

- > Sea level rise of 110 to 770 mm by 2100
- Repercussions to agriculture
- Possible slowing of the thermo-haline circulation
- Reductions in the ozone layer
- Increased intensity and frequency of hurricanes and extreme weather events
- Lowering of ocean pH
- > The spread of diseases such as malaria and dengue fever
- Mass extinction events
- Physiological effects involving reduction in the pH value of the blood serum (acidosis)
- Reduction in rains

Combating Global Warming

- Reduction of energy use (per person)
- Shifting from carbon-based fossil fuels to alternative energy sources
- Carbon capture and storage; Geoengineering including carbon sequestration
- Population control

Mineralization of CO₂

CO₂ reacts with available metal oxides, which in turn produces stable carbonates. This process occurs naturally over many years and is responsible for a large amount of surface limestones.

Advantage of the process

- Mineral carbonation is thermodynamically favourable and occurs naturally
- Raw materials such as mineral silicates and industrial wastes rich in MgO and CaO are abundant
- Produced carbonates are stable
- The process can be made economical by utilizing carbonates

Uses of mineral carbonates

Can be used for synthesis of industrially valuable and useful by-products such as chemicals, cements and construction materials, white pigment in paints, a therapeutic source in antacids and calcium supplements, and tableting excipient as well as remediation of waste feed stocks

➤ Mineralization process parameters can be optimized to produce high purity valuable metals, silica and carbonate mineral powders

The conventional carbonation pathways are, however, very slow under ambient temperature and pressure.

Carbon sequestration

Carbon sequestration or CCS (carbon capture and storage) can be defined as the capture and secure storage of carbon that would otherwise be emitted to or remain in the atmosphere

Methods of carbon sequestration

- 1. Terrestrial sequestration in plants and soil
- 2. Geological sequestration
- Underground structures eg. Unminable coal seam
- CO₂ is sometimes injected into declining oil fields to increase oil recovery
- CO₂ can also be sequestered in deep saline aquifers where it displaces brine and some of it would get partially dissolved

3. Ocean sequestration

Carbon sequestration by direct injection into the deep ocean involves the capture, separation, concentration, transport, and injection of CO_2 from land or tankers

Drawbacks associated with ocean and geological storage of carbon dioxide

- Future risk of leakage from the site of injection and could cause local ecological damage.
- Separation, concentration and transportation increases the cost of the process

Carbon sequestration using biological systems

Heterotrophic microbes

Algal cultivation

Carbonic anhydrase

Carbonic anhydrases (CA) are one of the fastest known (K_{cat} ranging from 10⁵ to 10⁷ s⁻¹) and ubiquitously present zinc containing metalloenzymes that catalyzes the interconversion of CO₂ and water to bicarbonate and protons.

$\mathrm{CO}_2 + \mathrm{H}_2\mathrm{O} \leftrightarrow \mathrm{HCO}_3^- + \mathrm{H}^+$

CA can speed up the process of calcification by catalyzing the rate-determining step (step 2a) in the conversion of CO_2 to $CaCO_3$.

Mechanism of action of CA

$\mathbf{E}\text{-}\mathbf{Zn}^{2+}\text{-}\mathbf{OH}^{-} + \mathbf{CO}_2 \iff \mathbf{Zn}^{2+}\text{-}\mathbf{HCO}_3^{-}$	(2a)
$Zn^{2+}-HCO_3^- \leftrightarrow E-Zn^{2+}-H_2O + HCO_3^-$	(3b)
$\mathbf{E}\text{-}\mathbf{Z}\mathbf{n}^{2+}\text{-}\mathbf{H}_{2}\mathbf{O} \leftrightarrow \mathbf{H}^{+}\text{-}\mathbf{E}\text{-}\mathbf{Z}\mathbf{n}^{2+}\text{-}\mathbf{O}\mathbf{H}^{-}$	(2c)
H^+ - E-Zn ²⁺ -OH ⁻ + B \leftrightarrow E-Zn ²⁺ -OH ⁻ + B-H ⁺	(2d)

Types of carbonic anhydrases (CA)

There are at least six distinct CA families (α , β , γ , δ , ζ and η).

These families have no significant amino acid sequence similarity and are an excellent example of convergent evolution.

Desirable characteristics for an ideal CA to be useful for CO₂ mineralization

- ***** Thermostability
- Alkalistability

Carbonic anhydrase assay methods

Wilbur Anderson assay

Its an electrometric assay in which the time required (in seconds) for a saturated CO_2 solution to drop the pH of 0.02 M Tris·HCl buffer from 8.3 to 7.3 at 0°C is determined. The time without enzyme is recorded at T_0 ; with enzyme, T. (pH meter: Metrohm, Switzerland with biotrode electrode)

WA Unit $=T_0 - T/T$

1 WA unit is defined as the amount of enzyme that causes the pH of a 20 mM Tris buffer to drop from pH 8.3 to 7.3 per minute at 0 °C.

CHEMIST'S PRAYER

Lord I fall upon my knees And pray that all my syntheses May no longer be inferior To those conducted by <u>bacteria</u>

OBJECTIVES

- 1. Selection of a potent carbonic anhydrase (CA) producing bacterial strain
- 2. Optimization of native CA production
- 3. Purification and characterization of native CA
- 4. Cloning, purification and characterization of CA produced heterologously in *E. coli* and *Pichia pastoris*
- 5. Application of CA in biomimetic carbon sequestration
- 6. Immobilization of CA and its utility in carbon sequestration

Screening of a potent carbonic anhydrase producing strain*

Strain	Location	U/ml	U/g dry biomass	SEA (U/mg)
			(gdbm)	
Bacillus halodurans	Extracellular	-	-	-
(TSLV1)	Intracellular		$6,300 \pm 430$	4.3
Geobacillus	Extracellular	-		
thermoleovorans (NP33)	Intracellular		-	
G. thermodenitrificans	Extracellular	-		
(C360)	Intracellular		-	
Sporosarcina pasteurii	Extracellular	0.33		0.043
	Intracellular		26 ± 2.0	0.63

*By Wilbur-Anderson assay

Identification of the selected bacterium

Bacillus halodurans (TSLVI)

Gram's staining

Endospore staining

Endospore under TEM

Bacillus halodurans is a rod-shaped, Gram positive, motile and spore forming bacterium isolated from the alkaline sediments of Lonar Lake.

Effect of elevated levels of CO₂ on growth and CA production by *Bacillus halodurans*

CO ₂ concentration (%)	U/ gdbm
0	$6,344 \pm 320$
0.03	$6,456 \pm 385$
5.0	$5,822 \pm 452$
10.0	$5,004 \pm 765$

Cotton plug containing zeolite

5М КОН

Optimization of carbonic anhydrase production by *B. halodurans* **TSLV1**

Enzyme preparation

Optimal variables for carbonic anhydrase production by B. halodurans

Culture variables that significantly affected carbonic anhydrase production identified by one-variable-at-a-time approach

	Component	%		
	Starch	0.5		
	Peptone	0.5		
	KH ₂ PO ₄	0.1		
	MgSO ₄	0.05		
	рН	8.5		
	Temperature (°C)	45.0		
	Agitation	200 rpr	n	
	Inoculum age	8 h		
	Inoculum size	2(%)1.	5x10 ⁶ cfu ml ⁻¹	
proach	CA production (U / gd	lbm)	Fold increase in production	Specific activity (U/mg protein)
Unoptimized medium	$6,300 \pm 580$		1	4.3
Optimized medium (One-variable-at-a-time approach)	$25,000\pm800$)	3.97	12

Appro

Optimization of CA production by Statistical methods

S.no.	Starch (%)	MgSO ₄ (%)	Inoculum size (%)	Predicted values	Observed values
1	2.5	0.12	2.49	30,278.8	31,120±985
2	2.13	0.10	3.71	29,573.5	28,203±1,024
3	2.92	0.08	2.99	34,353.2	35,920±1,105
4	3.34	0.07	3.54	30,672.9	29,728±1,000

Approach	CA production (U / gdbm)	Fold increase in production
Unoptimized medium	6,300 ± 350	1
Optimized medium (Statistical approach)	35,920 ± 1105	5.7

Component	%
Starch	2.5
Peptone	0.5
KH ₂ PO ₄	0.1
MgSO ₄	0.1
рН	8.5
Temperature (°C)	45.0
Agitation	200 rpm
Inoculum age	8 h
Inoculum size	3(%)

Optimized culture variables

Purification of CA from B. halodurans TSLV1

Steps involved in the purification process Crude lysate Acetone precipitation(0-50%, 50-70%) Anion exchange using (HicaptoTM) pAMBS affinity chromatography

Purification profile

Purification step	Activity (WA U/mL)	Total activity (WA U)	Protein (mg/mL)	Specific activity (U/mg)	Yield (%)	Fold purification
Crude protein	329.0	21155.0	7.6	43.29	100	1.0
Acetone precipitation	2311	12666	27.18	85	59.8	1.97
Anion exchange using (Hicapto Q TM)	4798.0	9076.1	2.5	1912.2	42.9	44.17
pAMBS affinity chromatography	625.88	8136.44	0.05	3,425	38.46	79.11

. Figure Native PAGE of purified BhCA along with zymogram. *Lane 1*: Crude lysate, *Lane 2*: Purified BhCA, *Lane 3*: Zymogram of BhCA

Molecular weight markers used with purified BhCA (1) β -Amylase (200); (2) Alcohol dehydrogenase (150); (3) Albumin (66); (4) Carbonic anhydrase (29kDa); (5) Cytochrome C (12.4kDa).

Zymogram of crude lysate of B. halodurans

SDS PAGE of crude lysate of *B. halodurans*: L1: Protein molecular weight marker, L2: Crude lysate, L3: Zymogram of CA activity

Environ. Sci. Pollut. Res. (2016): 23: 15236 – 249.

Characterization of BhCA

Effect of different pH and temperature on the stability of BhC

Effect of different pH on BhCA stability: BhCA is stable in pH 6.0-11.0 for 24 h retaining 100 % activity

Effect of different temperatures on BhCA stability: T $_{1/2}$ is 65 ± 1, 25 ± 1, 4.7 ± 0.5 and 1.2 ± 0.2 min at 50, 60, 70 and 80° respectively

Effect of CA specific inhibitors on the activity of BhCA

Inhibitor	AZA	EZA	MZA	SA	BSA	SNA	AS
IC ₅₀ (μΜ)	0.22	0.33	1.03	8580	4.58	76.2	168.36

*AZA- Acetazolamide EZA- Ethazolamide MZA- Methazolamide SA- Sulfamic acid BSA- Benzenesulfonamide SNA- Sulfanilamide SA- Sulfamic acid

Effect of different metal ions and anions on enzyme activity

Metal ions	Concentration	Residual activity				
		(%)				
Mg ²⁺	1 mM	100±0.30	Stimulators:		<u> </u>	
	5 mM	100±1.04	Sn^{2+} SO_4^{2-}	Anions	Concentration	Residual activity(%)
Zn ²⁺	500 µM	100±1.00	, -			
	1 mM	55.47±1.21	No observable	00	1.14	1 (7.9.10.7)
Hg^{2+}	500 µM	31.83±0.31		SO ₄ -	1 M	167.8±2.76
	1 mM	23.37±0.26	effect of SU ₃ ²		0.125 M	100 ± 2.44
	5 mM	0±0.5		SO ₃ ²⁻	1.0 M	100.66 ± 0.86
Co ²⁺	1 mM	40.43±0.27			1.25 M	100 ±0
~ •	5 mM	27.41±0.46		NO -	0.5 M	100 +2 08
Cu ²⁺	500 μM	44.60±1.19		NO ₃	0.5 14	100 12.08
	1 mM	36.66±0.38			1 M	83.01 ±1.66
2	5 mM	0±1			1.5 M	75.12 ± 2.64
Mn^{2+}	1 mM	99.57±1.24		HCO ₃ ⁻	0.1 M	100 ±0
	5 mM	100.±0.95			0.75 M	30.25+1.42
Ca ²⁺	1 mM	99.43±1.30		CO 2-	0.01 M	100 ± 0.12
A.1.2	5 mM	100.08±0.73		03-	0.01 WI	100 ±0.12
NI ²⁺	1 mM	22.65±0.30			0.05 M	75.63 ±0.66
T2 - 3+	5 mM	18.9/±0.14			0.1 M	60.05 ± 1.08
re	1 mM	21.36±0.27		Cl-	0.5 M	100.27 ±1.71
E a ² +	5 mM	0 ± 0.5			1 M	100.8 ± 1.53
re-	1 IIIM 5 mM	$2/./2 \pm 1.1/$		I-	1 mM	100.6 ±1.78
A 13+	J mM	0.04 ± 1.24		1		100.0 ±1.78
Al	1 mM	100 10.82			5 mM	99.8 ±1.29
$\Delta \alpha^{2+}$	1 mM	100+0 27		F-	1 mM	100 ± 1.5
ng	5 mM	100±0.27			5 mM	$100{\pm}1.0$
Sn ²⁺	1 mM	124 71+3 91		Br-	1 mM	100±0.5
	5 mM	148.16+1.28			5 mM	100+0.76
Pb ²⁺	1 mM	100±0.27			5 11111	100±0.70
	5 mM	68.92±1.79				
Ba ²⁺	1 mM	100.92±1.50				
	5 mM	100±0				
NH_4^+	1 mM	99.5±1.25				
7	5 Mm	100±0.5				
Na^+	1 M	100.87 ±0.29				
	2 M	73.27 ±1.64				

Effect of different modulators (inhibitors, ionic and non ionic detergents) on enzyme activity

Modulator	Concentration	Residual activity (%)	
WRK	1 Mm	96 ±3.7	
	5 mM	0 ±0.55	No observable effect of
NBS	1 mM	6.0±1.21	
	5 mM	0 ±0.53	
NEM	1 mM	95.3 ±2.57	
	5 mM	0 ± 0.41	
DEPC	1 mM	76±1.5	
	5 mM	0.85±1	
PMSF	1 mM	36.06±1.42	
	5 mM	27.44±1.76	
DTT	1 mM	93.8 ±2.93	
	5 mM	43.2 ± 3.89	
IAA	1 mM	50.3 ±2.36	
	5 mM	0 ±0.63	
β-ΜΕ	1 mM	100±1.02	
	5 mM	80.88	
TRITON X100	0.1%	84.5 ±1.54	
	0.2%	83.22 ±1.5	DTT- dithiothreitol 6-ME - 6-mercantoethanol
TWEEN 80	0.1%	100.2 ± 1.67	WRK - Woodward's reagent K
	0.2%	101.5 ± 2.07	IAA - Iodo acetamide
SDS	1%	99.24	PMSF- phenyl methyl sulfonyl fluoride NBS - N-bromosuccinimide
	5%	86.22	NEM - N-ethylmaleimide
EDTA	50 mM	100 ±0.2	DEPC - Diethylpyrocarbonate
	1 M	100.58±0.66	ED IA –emplementalimeterratette

servable effect of EDTA

BhCA is a zinc containing metalloenzyme

2, 6-pyridinedicarboxylic acid (PDCA) – specific chelator of zinc ion

BhCA lost activity upon dialysis against PDCA , and the activity was restored upon dialysis against Zn²⁺ confirmed BhCA to be a zinc metalloenzyme.

Temperature stability of BhCA in presence of sulphate

Far-UV CD spectra of BhCA in presence and absence of sulphate

Melting Temperature (Tm) of BhCA

Shelf life of BhCA

	Residual activity	
	(%)	
Duration	4 °C	Room temperature
6 months	100	100
12 months	100	100
18 months	100	94
24 months	100	85

Application of BhCA in biomineralization of CO₂

Turbidometric experiment to study the effect of CA enzymes on acceleration of CaCO₃ precipitation

Sample	BSA	BhCA	BCA
Time (s)	130 ± 2.5	8 ± 0.5	38 ± 2.0

*BSA= Bovine serum albumin BCA= Bovine carbonic anhydrase

Application of BhCA in mineralization based CO₂ sequestration

Analysis of carbonate precipitation catalyzed by crude and pure preparations of BhCA. BSA served as a negative control. Specific inhibition of purified BhCA by AZA led to decline in carbonate precipitation

Mineralization of exhaust gas CO₂ using BhCA and Ca²⁺

Comparison of sequestration efficiencies of BCA and BhCA at 37 and 45 °C in presence of SO_4^{2-} and NO_3^{-} in terms of carbonate precipitation. BSA served as a negative control

SEM images of CaCO₃ precipitate obtained after mineralization of CO₂

(a) Vaterite form of CaCO₃ formed in absence of rBhCA; (b) Calcite form of CaCO₃ formed in the presence of BhCA

Cloning of *a CA* in *E. coli*

Cloning of α-CA from B. halodurans

α-CA (828bp)

Full length primers:

FP: CCCCCGAATTCATGAAAAAATATTTATGGGGAAAAACGTG **RP**: CCCCCGCGGCCGCTTTCAGTGATCACGTCATAGACATCAC

Deduced amino acid sequence of α -CA (275 amino acids)

MKKYLWGKTCLVVSLSVMVTACSSAPSTEPVDEPSETHEETSGGAHEVHWSYTGDTGPEHWAELDSEYGAC AQGEEQSPINLDKTEAIDTDTEIHVHYEPSSFTIKNNG**H**TIQAETTSDKNTIEIDGKEYTLV**Q**F**H**F**H**IPS**E**HEMEG KNLDMEL**H**FVHKNENDELAVLGVLMKAGEENEELAQLWSKLPAEETEENISLDESIDLNVLLPESKEGFHYNG SL**T**TPPCSEGVKWTVLSEPITVSQEQIDAFAEIFPDNHRPVQPWNDRDVYDVITE

Catalytically important amino acids His 136, His 138, His 155 – involved in zinc binding

Theoretical mol. mass= 31 kDa

Active site : 110-223 Signal peptide : 1-25

Proposed 3D structure of acidic α-CA from *B. halodurans.* The template α-CA of *Sulfurihydrogenebium azorense* (PDB ID 4x5s.1) shared 43.88% identity with α-CA of *B. halodurans.*

Total number of negatively charged residues (Asp + Glu): 56 Total number of positively charged residues (Arg + Lys): 15

Multiple sequence alignment of α-CA from *B. halodurans* with α-CAs of other microbes

Bacillus halodurans TSLV1 B. halodurans C-125 B. marmarensis B. pseudofirmus P. mucilaginosus Paenibacillus polymyxa Paenibacillus riograndensis Thermovibro ammonificans Bacillus halodurans TSLV1 B. halodurans C-125 B. marmarensis B. pseudofirmus Paenibacillus mucilaginosus Paenibacillus polymyxa Paenibacillus riograndensis Thermovibro ammonificans Bacillus halodurans TSLV1 B. halodurans C-125 B. marmarensis B. pseudofirmus Paenibacillus mucilaginosus Paenibacillus polymyxa Paenibacillus riograndensis Thermovibro ammonificans Bacillus halodurans TSLV1 B. halodurans C-125 B. marmarensis B. pseudofirmus Paenibacillus mucilaginosus Paenibacillus polymyxa Paenibacillus riograndensis Thermovibro ammonificans

53 TGDTGPEHWAELDSEYGACAQGEEQSPINLDKTEAID--TDTEIHVHYEPSSFTIKNNGH TGDTGPEHWAELDSEYGACAQGEEQSPINLDKAEAVD--TDTEIQVHYEPSAFTIKNNGH 53 DGESGPEHWGHLHASYSACVDGSEQSPINIDLAEMEASQQIEEINIQYEPASFSLVNNGH 59 -----ASYSACVDGSEQSPINIDLAEMEANQQIEEIDIQYEPASFSLVNNGH 71 EGNTGPAHWAELDQTFAACANGTEQSPVDIELTQTKVDKTAVQVELHYQPSAFTLMNNGH 59 57 EGDEGPEHWGELEKDFVACGNGQEQSPINIEHSHLEASHTQQPLQVHYSTTKVSILNNGH -----KVKDEGSLSPVVVEYSPSPVAVINNGH 71 29 SGSIGPEHWGDLSPEYLMCKIGKNQSPIDIN-SADAVKACLAPVSVYYVSDAKYVVNNGH * * • **** 111 TIQAETTS-DKNTIEIDGKEYTLVQF**HFH**IPSEHEMEGKNLDMEL**H**FVHKNENDELAVLG 111 TIQAETTS-DGNTIEIDGKEYTLVOF**HFH**IPSEHEMEGKNLDMEL**H**FVHKNENDELAVLG 119 TIQKNAVD-ENNAITLDGQEYQLVQF**HFH**TPSEHQFNGEHFDMEL**H**LVHQDINGNLAVLG 118 TIQKNAVD-ENNAITLDGQEYQLVQF**HFH**TPSEHQFNGEHYDMEL**H**LVHQDINGNLAVLG 119 TIQANAAAGNGNTITVDGTDYTLAOMHFHHPSENQINGKNFEMEGHLVHKNKDGGLAVVG 117 TVQVNAAS-PSNDIVVDGTKFTLKQFHFHHPSEHQIDGKNAEMELHFVHQSDTGSTAVLG 98 TIQVNLKN-QKNRITVEGKTYTLQOFHFHLPSEHEVDGKHADMELHFVHKNEEGQLAVLS 88 TIKVVMGG--RGYVVVDGKRFYLKOFHFHAPSEHTVNGKHYPFEAHFVHLDKNGNITVLG * • • 170 VLMKAGEENEELAQLWSKLPAEETEENISLDESIDLNVLLPESKEGFHYNGSLTTPPCSE 170 VLMKAGEENEELAKLWSKLPAEETEENISLDESIDLNALLPESKEGFHYNGSLTTPPCSE 178 VMIEEGAENEELAPAWGELPEEETENDITLEEPINLONLLPEDOSSFHYNGSLTTPPCTE 177 VMIEEGAENEELAPAWGELPEEETENEVALEEPINLONLLPDDOSSFHYNGSLTTPPCTE 179 FLMTAGKENKPLAEMWSKLPKQETKEDVKLEQPVDLPGLVPSTAHAFRYEGSLTTPPCSE 176 VLIQSGKENKAFNRIWSKLP-KDISQEAVLDEDVNLAALLPKDLHSVRYNGSLTTPPCTE 157 VLITKGTENAGLNKLWSVLPGEESEEEVPVNGDFDMNKLLPADLHSFRYOGSLTTPPCTE 146 VFFKVGKENPELEKVWRVMP-EEPGOKRHLTARIDPEKLLPENRDYYRYSGSLTTPPCSE . : *:* • * * * * * * * * * • * 230 GVKWTVLSEPITVSOEOIDAFAEIF-PDNHRPVOPWNDRDVYDVITE 230 GVKWTVLSEPITVSQEQIDAFAEIF-PDNHRPVQPWNDRDVYDVITE 238 EVKWIVFKEPIQKSAVQIQVFQEIY-EENHRPVQPLNERG-----237 EVKWIVFKEPIQKSAEQIQAFQEIY-EENHRPVQPLNERG-----239 HVKWIVLADPIEVSKEQIEAFAAIF-PDNHRPVQPLNQRTVVSN---135 HVNWTVLEQPIEMSADQIKQFAAIF-PDNHRPVQQLGTRELKADK--217 GVOWIVLEHPVOWSGEOINOFAAIF-PHDNRPVOALGSREVESDE--205 GVRWIVFKEPVEMSREOLEKFRKVMGFDNNRPVOPLNARKVMK----* * * • * * * • * • . . . * * * *

Neighbour joining tree for rBhCA

Phylogenetic tree of recombinant α -CA: rBhCA shows highest homology with *Bacillus halodurans* C-125

The α-CA encoding gene sequence has been deposited at GenBank database (accession no. KR347171)

Cloning of *BhCA* in pET28a vector & expression analysis after transformation in *E.coli* BL21(DE3)

Construction of the recombinant vector rBhCA-pET28a

L1 : Marker, L2: Induced soluble fraction, L2:Uninduced soluble fraction, L3: Uninduced inclusion bodies , L4:Induced inclusion bodies ,

CA production was measured using Wilbur Anderson assay

7,85,000 ± 1000 U/gdbm

Intern. J. Biol. Macromol. (2017) 31: 3002 -3009

Purification of rBhCA

rBhCA was purified from *E. coli* by using Ni-NTA affinity chromatography. rBhCA was eluted using 300 mM imidazole

L1 : Marker, L2: Purified rBhCA

	EA	Volume	Total EA	Protein	Specific	Yield	Fold
	(U/ml)	(ml)		(mg/ml)	activity		Purificati
					(u/mg)		on
Sample	2019.5	5	10,097.5	2.10	961.66	100%	1
loaded							
Eluate	804.8	8	7,855.6	0.09	8942.2	77.7%	9.2

Characterization of rBhCA

Native molecular weight determination

Plot of Ve/Vo against molecular weight of proteins on SephacrylTM S-200 high resolution column (16/60). Molecular weight markers (kDa) used with purified rBhCA. Cytochrome c (12.4kDa), carbonic anhydrase (29kDa), bovine serum albumin (66kDa), yeast alcohol dehydrogenase (150kDa) and sweet potato β-amylase (200kDa)

Effect of different pH and temperature on the stability of rBhCA

Recombinant pH stability

Effect of different temperatures on BhCA stability

 $T_{1/2}\,$ is 64.5 \pm 1, 24 \pm 1, 4.4 \pm 0.5 and 1.0 \pm 0.2 min at 50, 60, 70 and 80 °C respectively

Effect of CA specific inhibitors on the activity of rBhCA

Inhibitor	AZA	EZA	MZA	SA	BSA	SNA	AS
IC ₅₀ (μΜ)	0.25	0.35	1.0	8610	4.0	76.9	166.5

* Acetazolamide (5-acetamido-1-thia-3, 4-diazole-2-sulphonamide, AAZ), methazolamide (MZA), Ethoxyzolamide (EZA), Sulfanilamide (4-amino benzene sulphonamide, SNA), sulfamic acid (SA), Benzenesulfonamide (BSA) and Ammonium sulfamate (AS)

*IC50 = Half maximal inhibitory concentration

Effect of different metal ions, anions on enzyme activity

Metal ions	Concentration	Residual activity (%)	Stimulators:			
Mg ²⁺	1 mM	100±0.30	Sn^{2+} SO ²⁻	Anions	Concentration	Residual activity(%)
0	5 mM	100±1.5	511 ⁻¹ , 50 ₄ ⁻			
Zn ²⁺	500 µM	100±0				
	1 mM	50.5±1.5	No effect of $SO_3^{2^2}$	SO4-	1 M	170 ±2.5
Hg ²⁺	500 µM	33.83±1.41			0.125 M	100 ±0
	1 mM	22.08±1.26		SO-2-	1 0 M	100 +0 5
	5 mM	0±1.5		503	1.0 M	100.10
Co ²⁺	1 mM	43.44±1.8			1.25 M	100 ±0
	5 mM	25.80±2.6		NO ₃ -	0.5 M	100 ±1.5
Cu ²⁺	500 µM	46.60±1.9			1 M	85.16 ±1.5
	1 mM	34.56±1.58			1.5 M	77.44 ±1.88
	5 mM	0±1.6		HCO.:	0.1 M	100 +0
Mn^{2+}	1 mM	100±0.5		neo3	0.75 M	22 55 12 5
	5 mM	100±1.5			0.75 M	32.55±2.5
Ca ²⁺	1 mM	100±1.60		CO ₃ ²⁻	0.01 M	100 ± 0
	5 mM	100±0			0.05 M	73.63 ±1.74
Ni ²⁺	1 mM	20±2.50			0.1 M	62.54 ±2.45
T 2:	5 mM	15.8±1.54		Cl-	0.5 M	100 +1 8
Fe ³⁺	I mM	24.36±1.87		CI .	1 M	100 + 1
T 2	5 mM	0±0.9			1 M	100.±1
Fe ²⁺	I mM	25.88±2.1		I-	1 mM	$100.\pm 1.5$
A 13+	5 mM	0±.5			5 mM	99.8 ±1
AI^{J^+}	I mM	100 ±1		F-	1 mM	100±1.5
A -2+	5 mM	100±1.8			5 mM	100+1.0
Ag	1 mM	100±1		D	5 min	100-1.0
S =2+	5 mM	100±2.88		Br-	1 mM	100±0
511-1	1 IIIM 5 mM	120.44 ± 2.55 143.16 ± 3.54			5 mM	100±0
Db2+	J IIIM	143.10±3.34				
ΓU	1 mM	100±0 70.06±2.76				
Ba ²⁺	1 mM	100+0				
Da	5 mM	100+1 5				
NH.+	1 mM	100+0.25				
	5 mM	100±0.5				
Na^+	1 M	1100 ± 0.29				

2 M

75.5 ±2.8

Effect of different additives (inhibitors, ionic and non ionic detergents) on enzyme activity

Modulator	Concentration	Residual activity (%)	
WRK	1 Mm	92 ±1.5	
	5 mM	0 ± 0	
NBS	1 mM	8.0±1.5	
	5 mM	0 ±0.5	No effect of EDTA
NEM	1 mM	97 ±2.6	
	5 mM	0 ± 0.5	
DEPC	1 mM	74±2.0	~
	5 mM	0.5±1	Conserved residues in active site and outside
PMSF	1 mM	38.06±2.6	
	5 mM	23.54±0.76	Trp185, 233
DTT	1 mM	95 ±2.5	Glu142, 153
	5 mM	45 ±2.8	Asp117, 204
IAA	1 mM	52.22 ± 1.54	Cys227
	5 mM	0 ±0.5	Ser141
β-ΜΕ	1 mM	100±0	H110, H 137, H139, H156
	5 mM	83.4±2.5	
TRITON X100	0.1%	87.5 ±2.0	
	0.2%	85.22 ± 1.8	
TWEEN 80	0.1%	100 ± 1.5	
	0.2%	100. ±0.5	
SDS	1%	100±0	
	5%	88.5±1.66	
EDTA	50 mM	100 ±0.5	DTT- dithiothreitol
	1 M	100±0	β-ME - β-mercaptoethanol
dinedicarboxylic acid	3.34 mM	0	WRK - Woodward's reagent K

NEM - N-ethylmaleimide

DEPC - Diethylpyrocarbonate

EDTA –ethylenediaminetetraacetic

Site directed mutagenesis for confirming the catalytic residues

H₁₃₇ -Y CAForward Primer: CACACTCGTTCAATTC**T**ACTTCCATATTCCTTCCGAG H₁₃₇ -Y CAReverse Primer: CTCGGAAGGAATA**TG**GAAGT**A**GAATTGAACGAGTGTG

H₁₃₉-Y CAForward Primer: CACACTCGTTCAATTC**TAC**TTC**C**ATATTCCTTCCGAG H₁₉₈-Y CAReverse Primer: CTCGGAAGGAATAT**G**GAA**GTAG**AATTGAACGAGTGTG

H₁₅₆-Y CAForward Primer: AATTTAGATATGGAGCTT**T**ATTTTGTCCATAAGAATG H₁₅₆-Y CAReverse Primer: CATTCTTATGGACAAAA**TA**AAGCTCCATATCTAAATT

H₁₁₀ -Y CAForward Primer: ACGATTAAAAATAATGGT**GCT**ACGATTCAAGCAGAGAC H₁₁₀-Y CAReverse Primer: GTCTCTGCTTGAATCGT<mark>AGC</mark>ACCATTATTTTTAATCGT

SDS PAGE showing expression of muteins. L1-L4: Crude lysates of the muteins H110, H137, H139, H156; L2: Uninduced crude lysate; L6- Protein Markers

Melting Temperature (Tm) of rBhCA

Thermal unfolding curve for rBhCA

Comparison of wild type and recombinant CA

Properties	Native CA	Recombinant
Production (U/gdbm)	$35,000 \pm 800$	$7,85,000 \pm 1,105$
pH stabilty	6-11	6-11
Thermal stability $(T_{1/2} \text{ at } 50^{\circ}\text{C})$	65 ± 1 min	$64.5 \pm 1 \text{ min}$
Tm	71 °C	72 °C
Mol. mass	~74 kDa	~75 kDa
Specific activity (U/mg protein)	$3,425 \pm 95$	8, 942 ±112

Fold improvement in CA production=22.4

Cloning of *BhCA* **in** *Pichia pastoris*

Cloning and expression of *BhCA* under AOX1 promoter

L1

L2

3.0 k

1.0 kb

Clone confirmation by digesting the construct with L1: *EcoRI* ; L3: *EcoRI* and *XbaI*

CA production- 1 U/mL

Genomic DNA isolation from the *Pichia*-pPICZ- αCA clone

L1

Amplification of αCA from the genome of *Pichia* pPICZαCA construct . L1: αCA (828bp) L2: DNA Ladder

Cloning and expression of *BhCA* under GAP promoter using pGAPZα vector

Confirmation of pGAPZ-*BhCA* construction by double digestion. L1: αCA fall out after digestion with EcoRI and XbaI, L2: DNA Ladder

Genomic DNA isolation from the *Pichia*- pGAP Z-*BhCA* clone

Amplification of α-CA from the genome of *Pichia* pGAP Z-*BhCA* clone . L1: BhCA (850bp) L3: DNA Ladder

After OVAT 25 ± 2 U/mL of rBhCA production was attained.

Strategy for construction of *pGAPKαA-BhCA* construct

qPCR standard curves. [A] qPCR standard curve for *GAP* gene; [B] qPCR standard curve for rBhCA

Number of copies of *BhCA* gene in the recombinant: 2

Recombinant BhCA production: 48 U ml⁻¹

Environ . Sci. Pollut. Res. (2018). 25: 6838-6849

Purification of rBhCA from *Pichia pastoris*

L1 : Marker, L2: Purified rBhCA from E. coli, L3, Purified rBhCA from Pichia

Plot of Ve/Vo against molecular weight of proteins on SephacrylTM S-200 high resolution column (16/60). Molecular weight markers (kDa) used with purified rBhCA. Cytochrome c (12.4kDa), carbonic anhydrase (29kDa), bovine serum albumin (66kDa), yeast alcohol dehydrogenase (150kDa) and sweet potato β-amylase (200kDa)

In silico analysis of glycosylation sites using NetNGlyc 1.0 server

NetNGlyc 1.0: predicted N-glycosylation sites in Sequence

N-glycosylation sites predicted by NetGlyc 1.0 Server

3D model of rBhCA showing distribution of the Nglycosylated residues (green spheres) O-glycosylated residues (magenta spheres)

Characterization of rBhCA expressed in P. pastoris

Effect of different temperatures on pichBhCA stability

 $T_{1/2}~$ is 72 \pm 1.1, 32 \pm 1, 7.0 \pm 0.5 and 2.0 \pm 0.15 min at 50, 60, 70 and 80° respectively

Melting Temperature (Tm) of rBhCA

Thermal unfolding curve for pichBhCA

Comparison of rBhCA expressed in E. coli and Pichia

Properties	rBhCA in <i>E. coli</i>	rBhCA in <i>Pichia</i>
Production (UL ⁻¹)	2,53,231 ± 2,875	$48,000 \pm 200$
pH stabilty	6-11	6-11
Thermal stability $(T_{1/2} \text{ at } 50^{\circ}\text{C})$	$64.5 \pm 1 \text{ min}$	$72 \pm 1 \min$
Tm	72 °C	75 °C
Mol. Wt.	~ 75 kDa	~ 79 kDa

BhCA as virtual peroxidase

Disadvantages of natural heme based peroxidases

Rapid inactivation
yield aldehyde side products
show low enantioselectivity

```
rBhCA as peroxidase

rBhCA

rB
```

Immobilization of rBhCA

Immobilization of CA on montmorillonite K10 by physical adsorption

Montmorillonite K 10 + deionized water				
vigorously stirred for 6 h				
Filtered, dried at 120 °C for 12 h and calcined at 350 °C for 12 h.				
Mixed with equal volumes Tris buffer solution (pH 8.3) and enzyme solution				
Shaken for 1 h in a water bath shaker at room temperature.				
Contrifuend for 1 h				
Washed several times				
Enzyme assay				

CA immobilization on montmorillonite
Immobilization of CA on montmorillonite K10by covalent attachment

Immobilization of CA on magnetized aniline nanofibers

Magnetite iron oxide nanoparticles were prepared by coprecipitation of Fe^{2+} and Fe^{3+} with NH_4OH using the method described by Mahdavi et al. 2013.

Reusability of CA immobilized on MNPs

Immobilization of CA on dopamine coated iron MNPs

Surface modification of MNPs with polydopamine

Reusability of CA immobilized on dopamine coated MNPs

Immobilization of CA on silanized iron MNPs

EDC (1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide) activation of carboxyl groups of CA

Reusability of CA immobilized on silanized iron MNPs

Intern. J. Biol. Macromol. (2017) 31: 3002 -3009

Effect of enzyme concentration on immobilization of CA on Si-MNPs

CA-Si-MNPs aqueous suspension after and before magnetic separation

Characterization of CA immobilized on iron MNPs

Effect of anions and metal ions on the immobilized rBhCA

Anion	Concentration	Residual activity
		(%)
SO ₄ -	1.0 M	100±0
	1.25M	172 ±3.0
SO ₃ ²⁻	1.0 M	100.±0.5
	1.25M	100 ±0
NO ₃ -	0.5 M	100 ±1.5
	1.0 M	85.1 ±1.5
	1.5 M	77.4±1.8
Pb ²⁺	1.0 mM	100±0
	5.0 mM	85.0±3.0
Hg ²⁺	500 μM	20±2.0
	1.0 mM	0±2.8

Conclusions

Conclusions

 \blacktriangleright *B. halodurans* produces alkalistable and moderately thermostable intracellular α -CA (BhCA) which is tolerant to SOx and NOx present in flue gas.

The gene encoding BhCA was cloned and heterologously expressed in *E. coli* and *P. pastoris*. Recombinant BhCA displays similar characteristics like the native CA

➢ Site directed mutagenesis confirmed the identity of catalytically important amino acid residues (H110, H 137 and H 139, H156) of BhCA.

- > Application of BhCA in mineralizing CO_2 from flue gas has been confirmed.
- ➢ rBhCA has been successfully immobilized on iron MNPs.

PUBLICATIONS

- S. Faridi, T. Satyanarayana, Novel alkalistable α-carbonic anhydrase from the polyextremophilic bacterium *Bacillus halodurans:* characteristics and applicability in flue gas CO₂ sequestration, Environmental Science and Pollution Research (2016) 23: 15236-15249 [DOI 10.1007/s11356-016-6642-0].
- S. Faridi, H. Bose and T. Satyanarayana, Characteristics of recombinant α-carbonic anhydrase of *Bacillus halodurans* TSLV1. International Journal of Biological Macromolecules (2016). 89: 659-668 [DOI : 10.1016/j.ijbiomac.2016.05.026].
- S. Faridi, T. Satyanarayana, Thermo-alkali-stable α-carbonic anhydrase of *Bacillus halodurans*: Heterologous expression in *Pichia pastoris* and applicability in carbon sequestration, , Environmental Science and Pollution Research (2017) 25: 6838 – 6849 (DOI: <u>10.1007/s11356-</u><u>017-0820-6</u>).

Dr. Shazia Faridi

