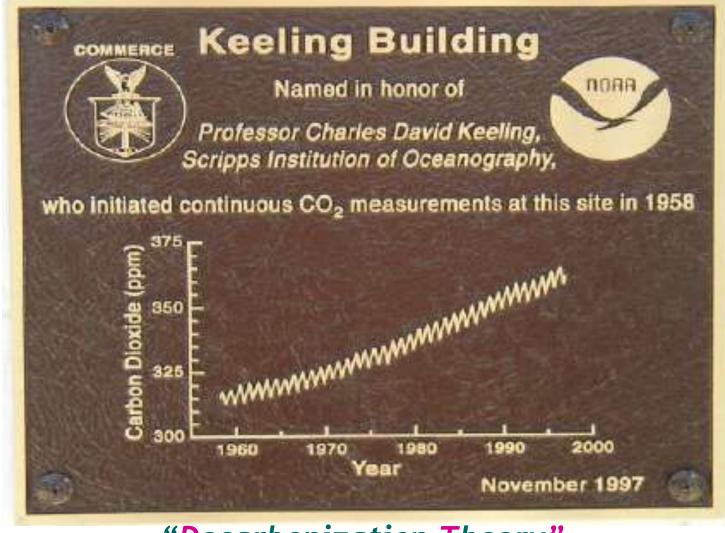
CO₂ sequestration potential of Indian coalfields

Debadutta Mohanty, Ph. D.


Scientist, Methane Emission and Degasification Division Central Institute of Mining and Fuel Research Dhanbad 826 015 JH India

Presented In

Workshop on Awareness and Capacity Building in Carbon Capture and Storage: Earth Processes (ACBCCS-2013), January 15-19, 2013 India International Centre, New Delhi - 110003

LECTURE OUTLINE

- > CCS ~ CO₂ GEO-SEQUESTRATION
- **COAL COALIFICATION COAL SEAM METHANE**
- COAL AS A POROUS MEDIA
- **> RETENTION AND RELEASE MECHANISM**
- > WHY ECBM???
- > DEPOSITIONAL SETTING OF COAL MEASURES
- > DISTRIBUTION OF INDIAN COALFIELDS
- > CO₂ STORAGE ESTIMATES

"<u>Decarbonization Theory</u>"

United Nations Framework Convention on Climate Change

"Low Carbon Economy"

CCS ~ CO₂ Geo-Sequestration

- Why Geo-sequestration: Is it Critical?

- Eligibility & Prospective Geologic Candidates
- Fundamental Concepts of Trapping
- Multi-component Sequestration System
- Site Selection Criteria

- What CCS is?

Carbon Capture & Storage (CCS)

Technological Innovations & efforts towards near-zero GHG emissions to the atmosphere

Major Concern: CO₂

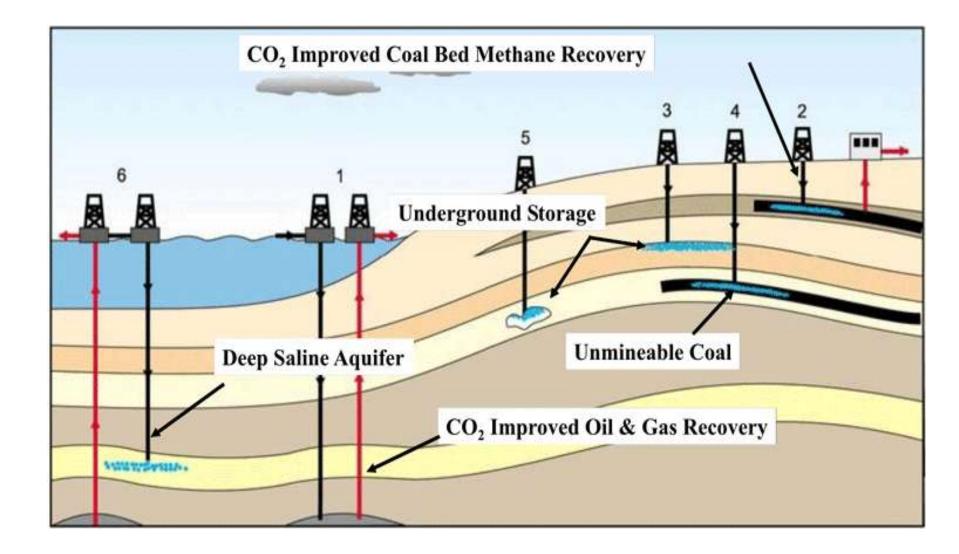
Major Sources: Point Sources like Power Plants

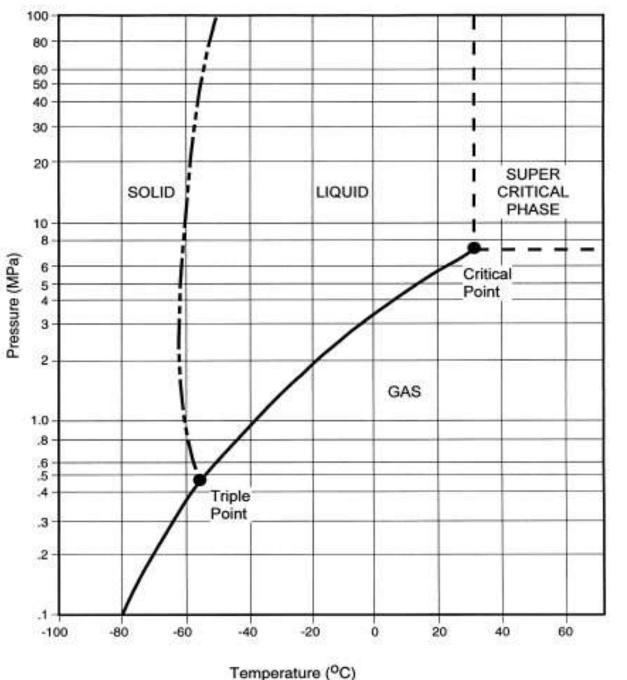
- Why Geo-sequestration: Is it Critical?

Capture, Transport & Injection: Technology available with Upstream Oil & Gas Industry, Power Sectors etc.

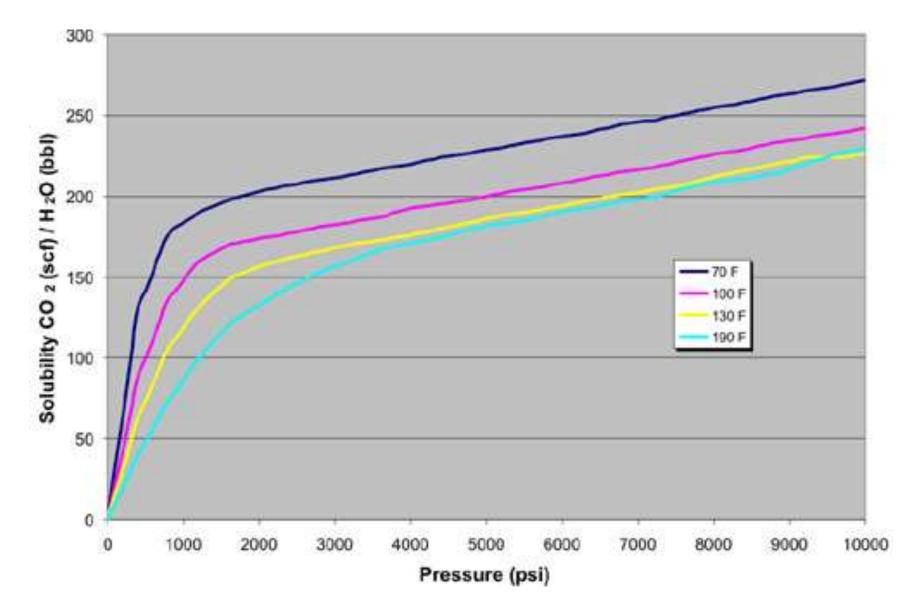
Storage: Artificial storage of huge emission is impossible & **GEOLOGIC SINKS** are the *only* solutions

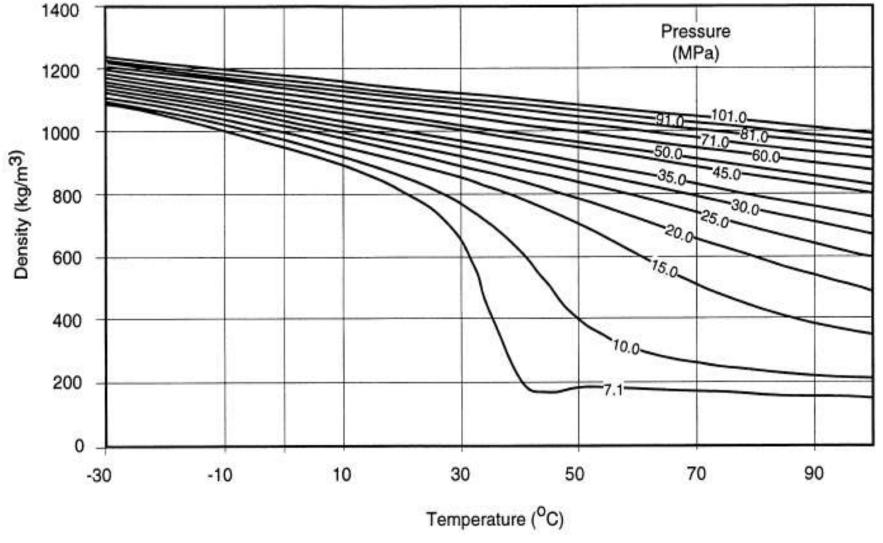
Identifying Geologic Sinks are CRITICAL & SITE SPECIFIC


- Eligibility & Prospective Geologic Candidates


Eligibility

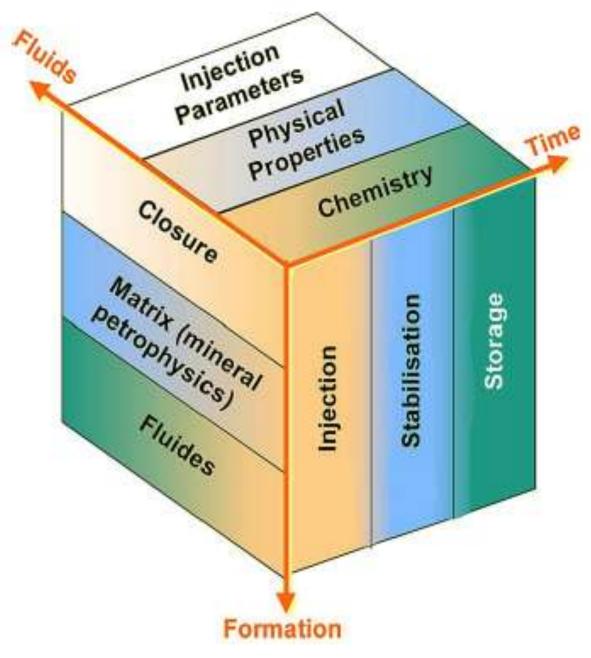
- Capacity to accommodate huge volume of CO₂ for geologically significant time span
- Leak Proof Storage (IPCC: leakage <1% over 1000 yrs)


- Eligibility & Prospective Geologic Candidates

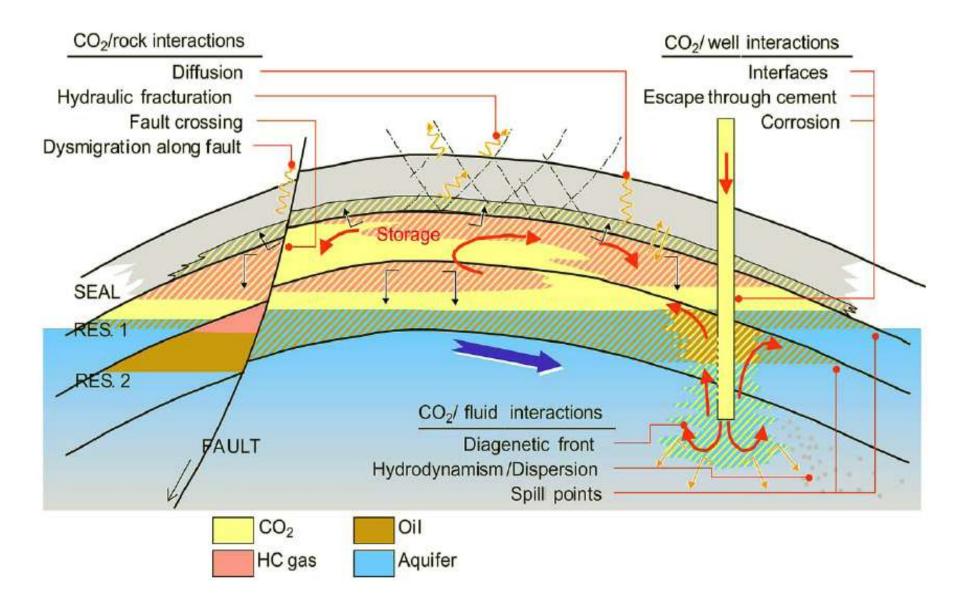


P=7.38 MPa, T=31.1 C (a storage reservoir depth~ 800m)

CO₂ Phase Diagram



CO₂ solubility in water at different P-T condition



CO₂ density variation at different P-T condition

- Multi-component Sequestration System

- Multi-component Sequestration System

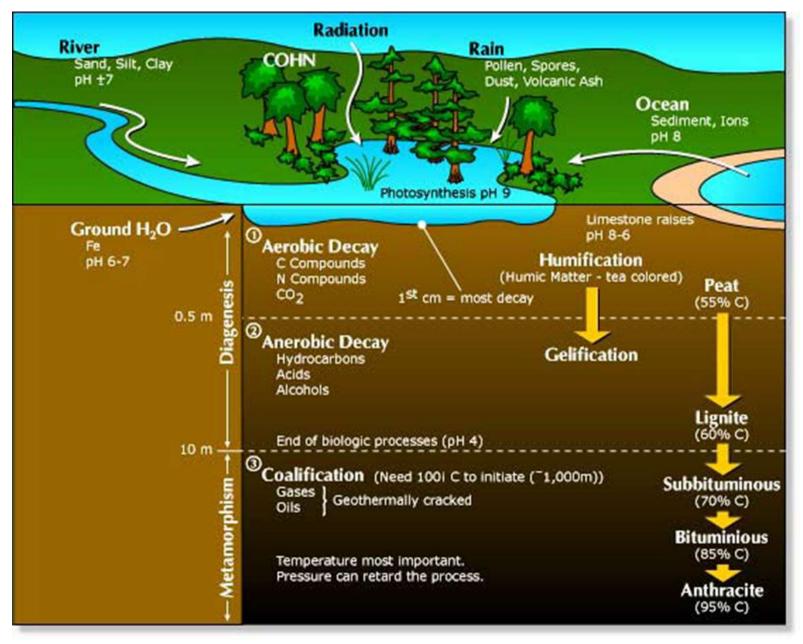
Mechanism of CO₂ Trapping

- Hydrodynamic pressure: CO₂ as Gas
- Solubility Trapping: CO₂ in solution
- Mineral Trapping: CO₂ as mineral, permanent sequestration

- Site Selection Criteria

Basin Scale Criteria

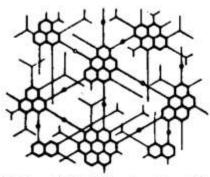
- Geological
- Geothermal
- Hydrodynamic
- Hydrocarbon potential and basin maturity
- Economics
- Political and societal

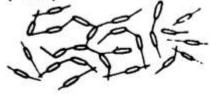

Coal Seam Methane (CSM)

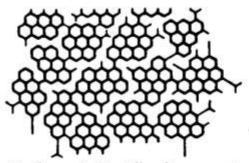
Methane formed during coalification trapped and stored in the coal seams

Occurrence Absorbed Adsorbed Free gas

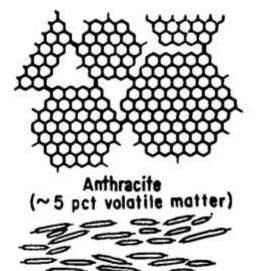
Origin Biogenic or Thermogenic

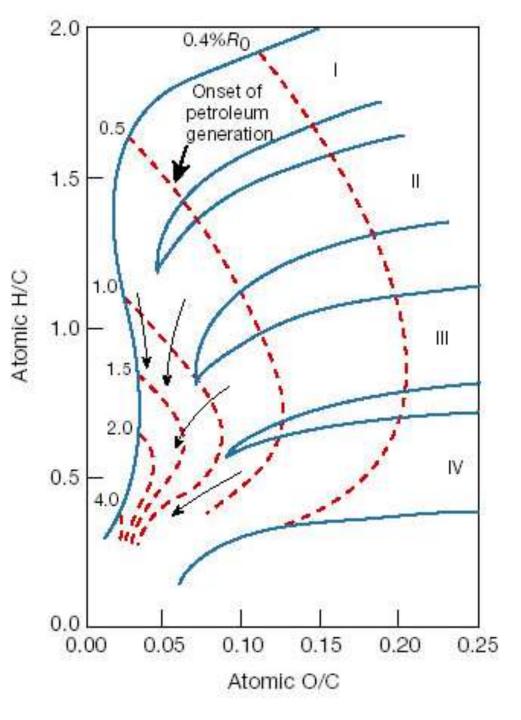

COAL – COALIFICATION – COAL SEAM METHANE


Elemental composition along with reflectance of Peat and coals of different rank

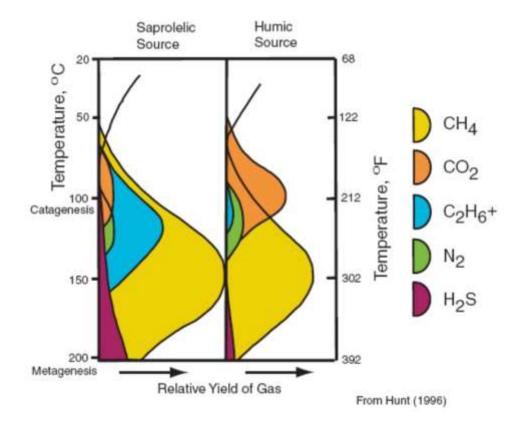

Rank	% C	% H	% O	Mean Ro%
Peat	55	6	30	< 0.28
Lignite	72.7	4.2	21.3	0.28-0.38
Sub Bitu	77.7	5.2	15.0	0.39-0.55
HV Bitu	80.3 -	5.5 -	11.1	0.50-1.15
	84.5	5.6	- 7.0	
M V Bitu	88.4	5.0	4.1	1.15-1.45
LV Bitu	91.4	4.6	2.1	1.45-1.90
Anthracite	93.7	2.4	2.4	>2.8

Coal as a Source Rock


High-volatile bituminous coal (~35 pct volatile matter)



Medium-volatile bituminous coal (~22 pct volatile matter)

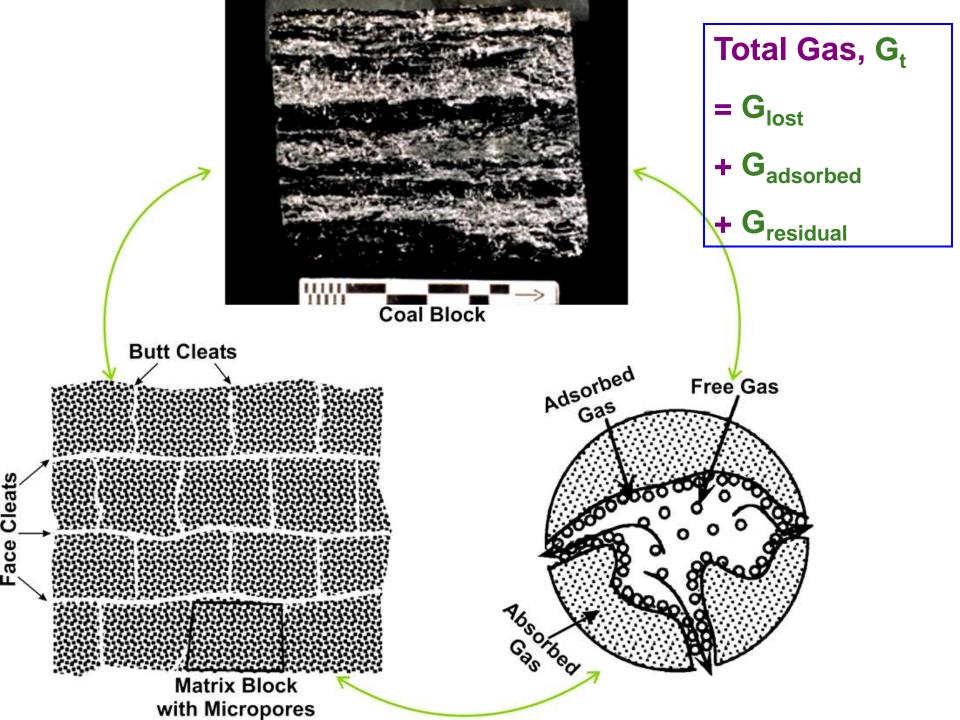


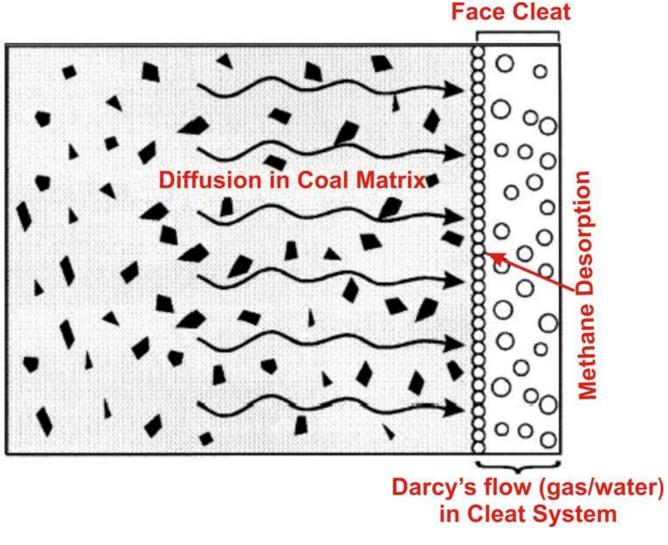
Coal as a Source Rock

Coal as a Source Rock

Table 1: Volume of gas generated during coalification (Scott 1993)

Methane	2,000 to 5,000+ scf/ton (63 to 157+ m ³ /t)
Carbon dioxide	6,000)+ scf/ton (188+ m ³ t) 177 scf/ton (6 m ³ /t)
Wet gases	100 to 1,000+ scf/ton (3 to 31+ m ³ /t)
Nitrogen	250 to 500 scf/ton (8 to 16 m ³ t)

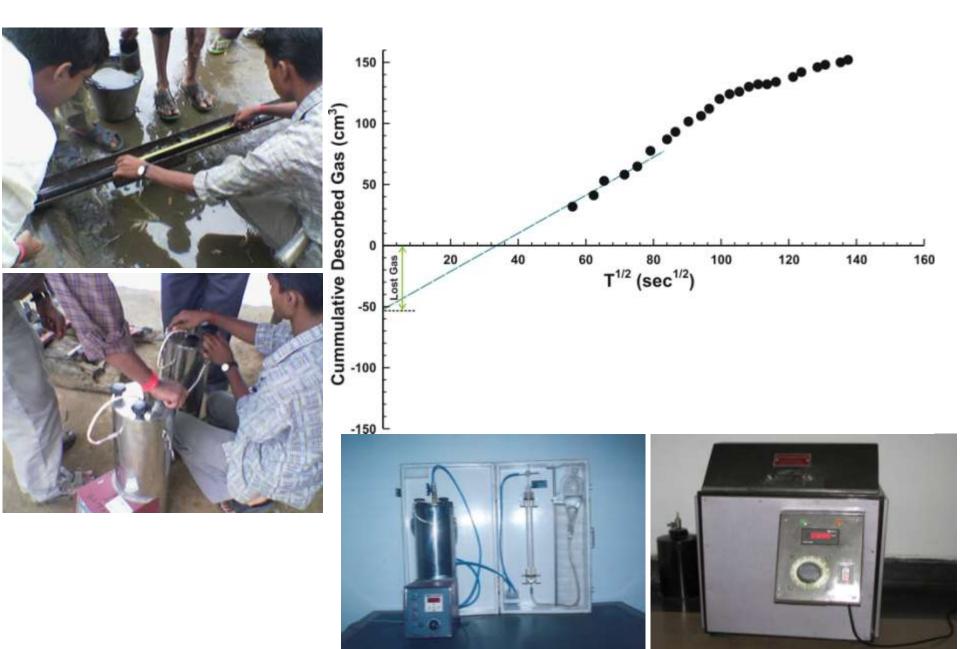

COAL AS A POROUS MEDIA


Gas-in-place ≤ Methane generated Dependent on

- Degree of confining pressure
- Seam permeation

PorosityPermeability

Surface area for sorptionFacilitate flow of gas



FICK'S LAW

(Single Component, Unidirectional Flow)

CREATED IN-SITU GAS CONTENT FACILITY

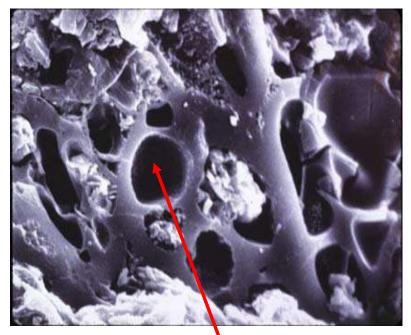
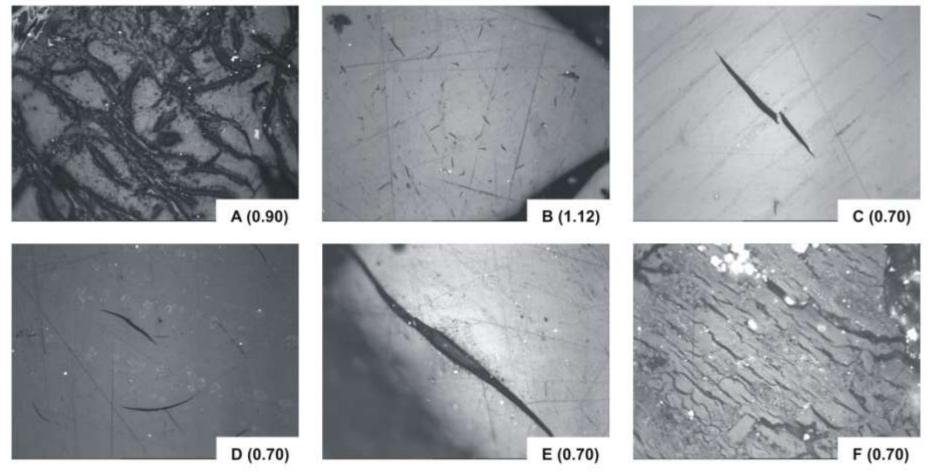


Table 4: Coalbed methane exploration model (Scott 1999)				
GAS CONTENT				
Coal rank and gas	Generally increases with coal rank and depth;			
generation	updip migration diffusion coefficients			
Depositional	Macerals affect gas sorption and desorption;			
setting	shale seals; coal thickness and continuity			
Tectonic setting	Conventional trapping of gases at faults and			
	anticlines; burial history; diagenesis			
Hydrodynamics	Secondary biogenic methane; high or low gas			
	content at convergent flow; low gas content			
	possible near recharge zone			
Permeability	High permeability near recharge zone may allow			
	flushing and low gas content			

✓ Matrix porosity: inherent porosity (integral part of the petrographic entities)
 According to IUPAC
 Macropore: Pore of width w ≥ 50 nm
 Mesopore: Pore of width 50 nm ≤ w ≤ 2 nm
 Micropore: Pore of width w ≤ 2 nm

✓ Induced porosity: (imparted by the fracture system Cleats: Master, Face, Butt cleats etc.)

Dual Porosity of Coal



Microscopic view of the Micropores structure of coal

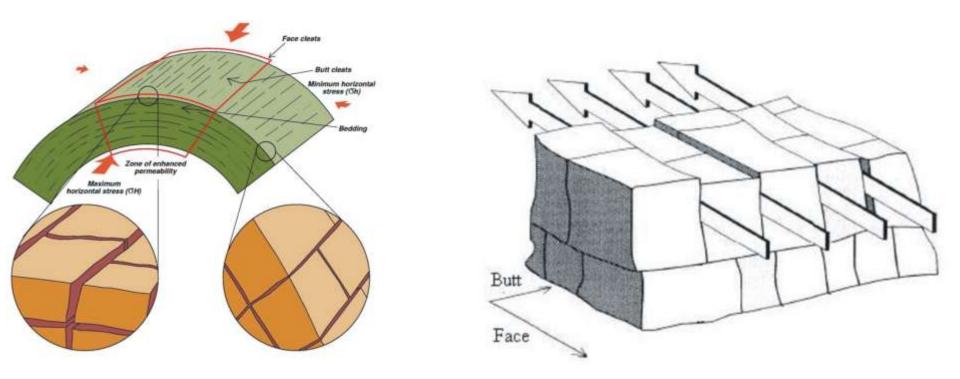
Fracture system, cleats in coal

Coal as a Porous Media

50µm

Figure shows the nature and style of micro-fractures in coals of different rank (values in the parenthesis indicate the mean R_0 %) a) reticulated network of cleats; b) clusters of slits with almost uniform size; c) development of cleats almost perpendicular to the liptinitic layer; d) development of micrinites along the layers of liptinite; e) mineral infillings in cleats; f) cleats developed in low rank coals.

Coal as a Porous Media


CHARACTERISTICS OF CLEATS

Cleats form an interconnected network in

the coal, normal to bedding

- Angle between face cleats and butt cleats is around 90°
 - Spacing between cleats is normally less than 25 mm and the aperture is 0.1 – 2 mm
- Butt cleats (shorter) terminate at a face cleat
- Cleats are formed due to intrinsic tensile
 force (shrinkage), fluid pressure and
 tectonic stress
- Tectonic stress controls the geometric pattern of the cleats (face cleats parallel to SH)
- Permeability ratio face cleats : butt cleats may range from 1:1 to 17:1

Coal as a Porous Media

Enhanced permeability of coal seams as a result of stress relaxation over an anticline crest and the maximum horizontal stress component being orientated parallel to the strike of face cleats

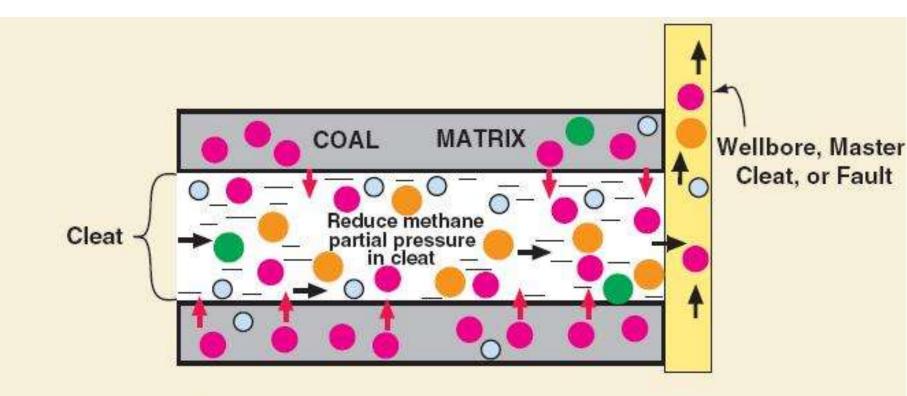
GWP of GHGs

- ➢ CO₂ − 1
- Methane 21
- Nitrous Oxide 310
- ➢ HFC 23 − 11700
- PFCs 6500 to 9200
- Nitrogen Trifluoride 17200
- Sulphur Hexafluoride 23900

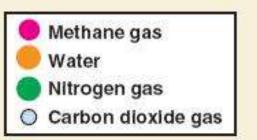
DIFFERENT CATEGORIES OF CBM

- > VCBM
- > CMM
- > AMM
- > VAM

CBM RESOURCES OF INDIA & WORLD

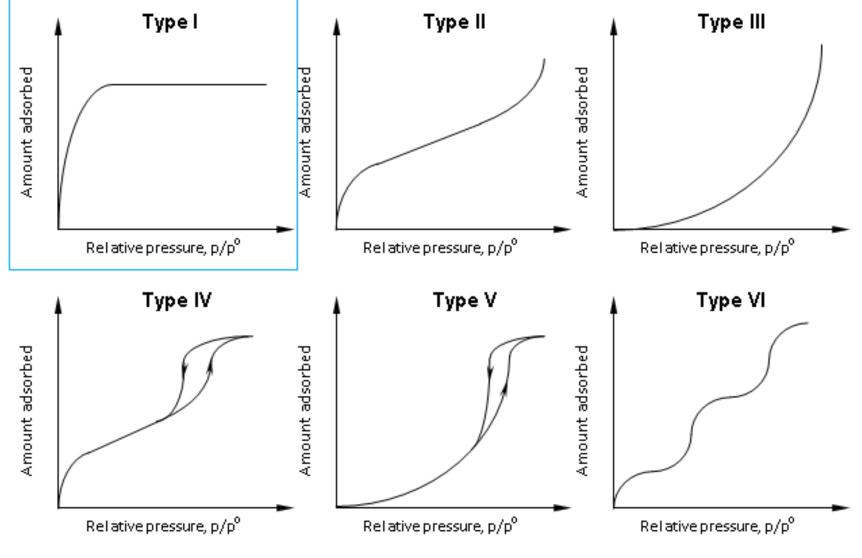

SI. No.	COUNTRY	COAL RESOURCES (BILLION TONNES)	CBM RESOURCES TCM
1	CANADA	7000	6.5 - 76.4
2.	RUSSIA	6500	13.3 – 73.6
3.	CHINA	4000	16.4 – 34.0
4.	USA	3970	12.7 – 25.5
5.	AUSTRALIA	1700	8.8 - 14.2
6.	INDIA	550 (264 + 286)	3.0 - 4.0
7.	GERMANY	320	1.7 – 2.5
8.	U.K	190	1.1 – 1.7
9.	POLAND	160	1.4 – 2.0
10.	SOUTH AFRICA	150	1.4 – 2.0
11.	INDONESIA	17	0.1 – 0.2
12.	ZIMBABWE	8	0.04 - 0.05

Global CMM Emission

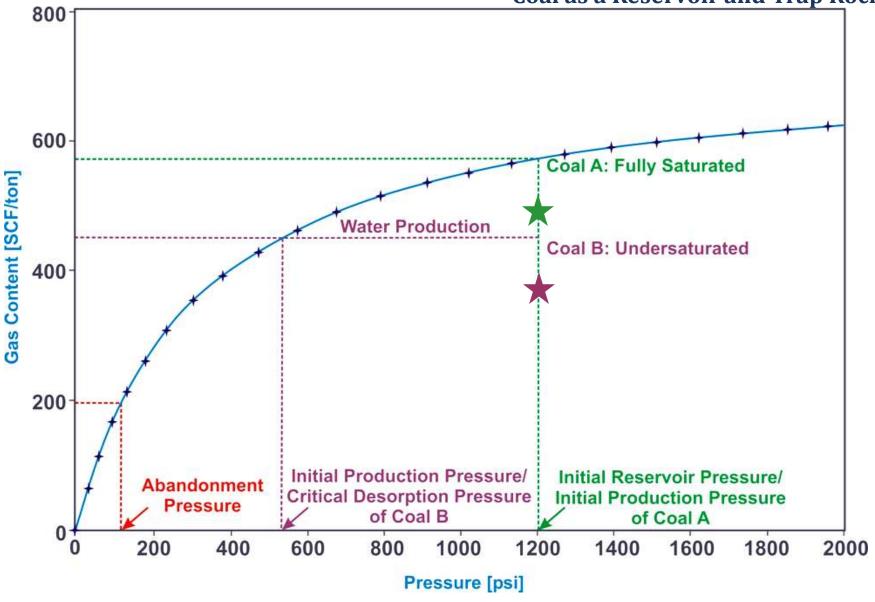

Country	2000 Methane Released	2000 CO2 Equivalent	2010 Methane Released	2010 CO2 Equivalent
	(M m ³)	(MMT)	(M m ³)	(MMT)
China	10,000	142.7	15,753	224.7
US	5,461	77.0	5,748	82.0
Russia	2,236	31.9	2,138	30.5
Australia	1,381	19.7	2,004	28.6
Ukraine	1,970	28.1	1,689	24.1
India	683	9.7	1,319	18.8
Poland	1,037	14.8	939	13.4
Germany	1,030	14.7	764	10.9
South Africa	496	7.1	506	7.2
Kazakhstan	488	7.0	447	6.4
UK	365	5.2	343	4.9
Czech Republic	351	5.0	266	3.8
Turkey	123	1.8	184	2.6
Japan	133	1.9	147	2.1
Canada	98	1.4	91	1.3

Why ECBM???

- Studies conducted so far supports stronger affinity of CO₂ to the coal molecule.
- 2 to 3 molecules of CO₂ may displace one molecule of methane
- It means carbon dioxide is preferentially adsorbed onto the coal structure over methane (2:1 ratio).
- Methane sorption capacity for Indian coals has been investigated by CIMFR.
- Understanding controls on CO₂ and CH₄ adsorption in coals is important for the modeling of both CO₂ sequestration and CBM production.



- Reduce cleat pressure by producing water
- O Methane desorbs from matrix and diffuses to cleat
- O Methane and water flow to wellbore



COAL AS A RESERVOIR AND TRAP ROCK

Sorption: Gas Retention/Transportation Mechanism

IUPAC classification of gas adsorption isotherms

Adsorption Isotherm for Reservoir Modeling

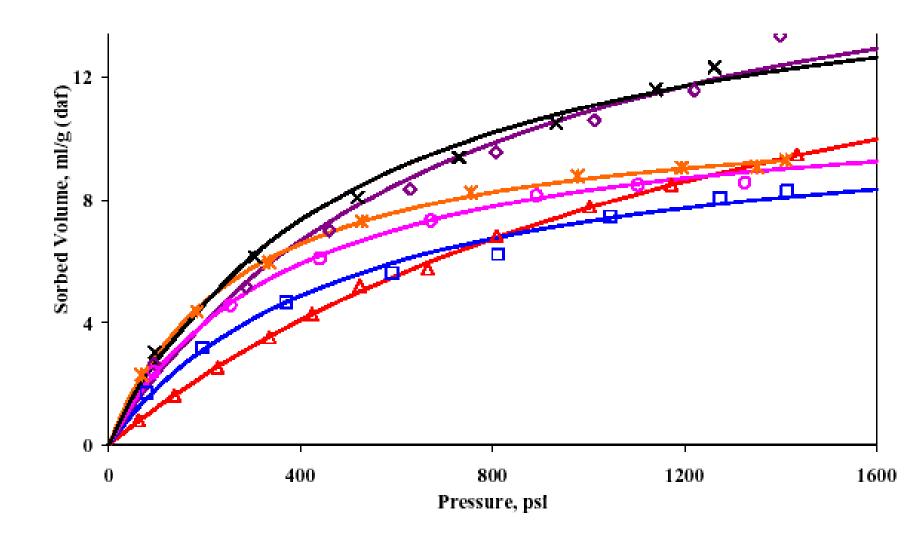
DST Sponsored Project: Role of coal composition and maturity on sorption behavior of Indian coals for gas storage estimation PI: Dr. Debadutta Mohanty

भारत सरकार विज्ञान और प्रौद्योगिको मंत्रालय, विज्ञान और प्रौद्योगिको विभाग, टेक्नोलॉंजो भवन, महत्तैली मार्ग, नई दिल्ली–110016

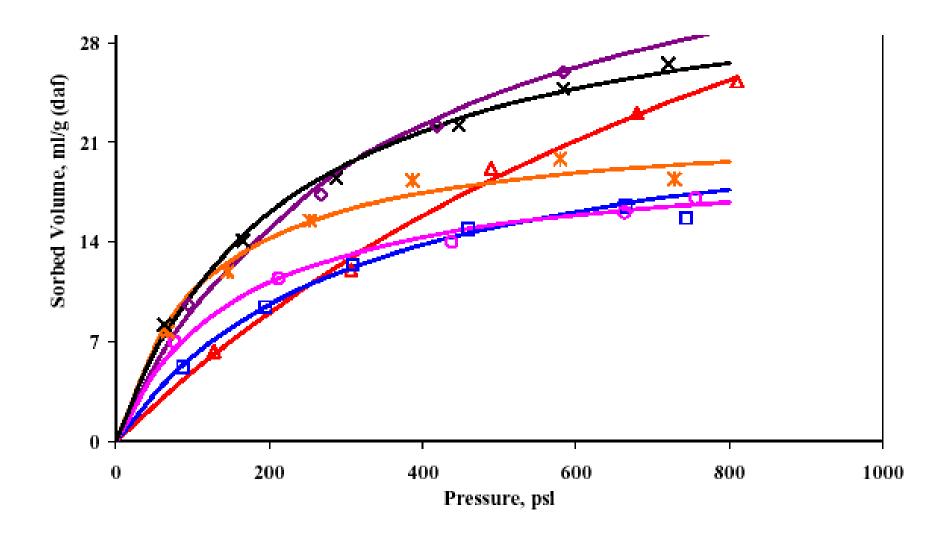
GOVERNMENT OF INDIA MINISTRY OF SCIENCE AND TECHNOLOGY, DEPARTMENT OF SCIENCE AND TECHNOLOGY, TECHNOLOGY BHAVAN, NEW MEHRAULI ROAD, NEW DELHE-110016 03:05:2012

SR/S4/ES-591/2011

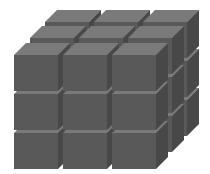
Subject : Project entitled: "Role of coal composition and maturity on the sorption behavior of Indian coals for gas storage estimation".


Dear Dr. Mohanty,

Deliverables


We are happy to inform you that your above project has been recommended by the PAC-ES during the 16th Meeting of the PAC-ES held at Andhra University, Visakhapatnam on 23rd March, 2012.

- Basin-wise empirical equations and constants to estimate sorption capacity from chemical data
- National Facility for high pressure adsorption study (up to 35MPa or 350bars)
- Papers/Patents


Methane adsorption

Carbon dioxide adsorption

Shrinkage and swelling behavior of coal is critical in CO₂ enhanced CBM recovery

TECTONIC AND DEPOSITIONAL SETTING

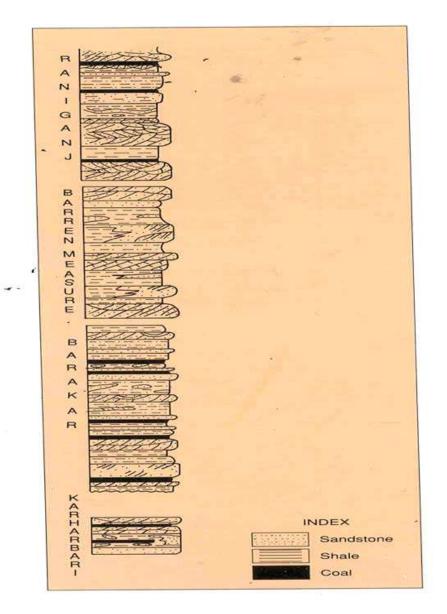
Major Tectonic Setup of Coal Basins

- Foreland basin setting
- Rift valley setting
- Cratonic setting
- Passive margin setting

Major Coal Depositional Systems

- Coal-bearing alluvial fan systems
 - Intermotane extensional and transtensional
 - Orogenic margins of foreland basins
- Coal-bearing fluvial fan systems
 - Usually suspended load or mixed-load; bed-load
 - Thickest seams between channel axes
- Coal-bearing deltaic systems
 - Tide –dominated deltas
 - Wave –dominated deltas
 - Fluvially dominated deltas
- Coal-bearing shore-zone
 - Back-barrier and tidal flat settings
 - Coal-bearing lacustrine systems

INDIAN COALFIELDS



 Coal deposits in India are of two distinct geologic ages: Gondwana coals of Permian age (~270myr) Tertiary coals (30 - 60myr)

➢ 57 Gondwana and 14 Tertiary coalfields considered as the national inventory of coal in India

➢ 99% of coal production comes from the Gondwana which are found in three geologic units i.e. Raniganj, Barakar and Karharbari formations

Three Gondwana master basins Damodar-Koel valley basin Son-Mahanadi valley basin and Pranhita-Godavari valley basin

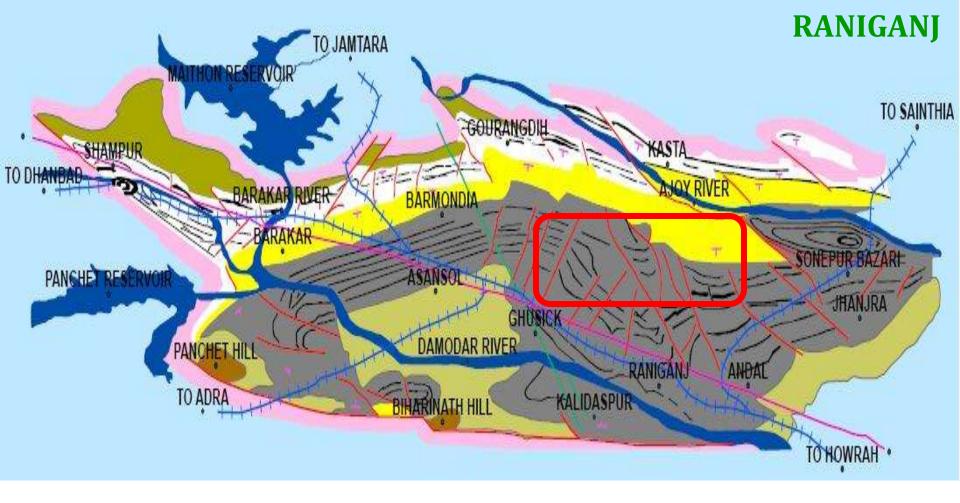
Typical Stratigraphic Sections of Karharbari, Barakar & Raniganj coal Measures

Extraneous Coal Deposits of India

Large tract of land in India is still not covered for regional exploration even in well delineated basins. Many a times, surface exposures are misleading, terrain is unfriendly or exploration is technically difficult and hence not included in potential coal basins.

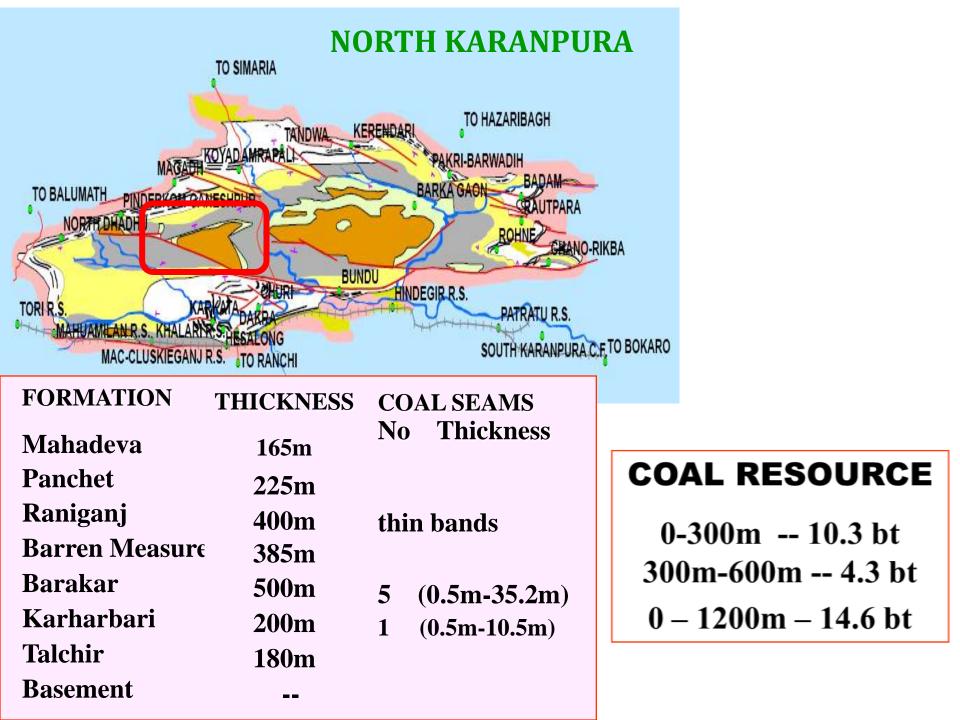
Grey Areas of Coalfields

Well-delineated coalfields of nearly 37000 sq km area have a few patches under deep cover beyond the resource estimation and eventual mining limits.


Concealed coalfields

Concealed areas are of recent discovery and invariably under deep cover, underneath basalt or alluvial cover. The exact extension of most of these basins is just indicative by way of geophysical prospective and with skeleton boreholes drilled for oil and natural gas exploration.

Unmineable coal beds in well-delineated coalfields


The mining limit is decided with due consideration to quality, fuel value, market demand, market price, basin location and abundance of coal. The limit as such varies for different grades of coal and location of the coalfields.

то сомон	TO DE	C₩₩+++	++++++++++++++++++++++++++++++++++++++	JHARIA
DAMATCA MADHU V COM		OD AR I	MOONIDIH	DHANBAD TO HOWRAH
FORMATION Intrusives	THICKNESS	<u>(</u> No	<u>COAL SEAMS</u> Thickness	TO ADRA
Raniganj	725m	22	(0.1m-4.7m)	COAL RESOURCE
Barren Measures	850m			
Barakar	1130m	46	(0.3m-33.0m)	0-600m 14.2 bt
Talchir	225m			600m-1200m 5.2 bt
Basement				0 – 1200m – 19.4 bt

Raniganj Coalfield: Cumulative coal thickness (42.27m) and development of thicker

seams(9.77m)

SOUTH KARANPURA

FORMATION	THICKNESS
Raniganj	360m
Barren Measures	385m
Barakar	1050m
Talchir	180m
Basement	

COAL SEAMS No Thickness

7 (0.8m-3.3m)

42 (0.5m-54.2m)

COAL RESOURCE

0-300m - 3.3 bt 300m-600m - 1.8 bt 600m-1200m - 0.9 bt 0 - 1200m - 6.0 bt

Category of coal beds	Grade of coal	Candidates /Basins
Unmineable coalbeds in wel	I- Power Grade coal	Singrauli, Mand Raigarh,
delineated Coalfields		Talcher, Godavari
Grey Areas	Coking coal	Jharia, East Bokaro,
		Sohagpur, S Karanpura
	Superior non coking coal	Raniganj
	-	South Karanpura
	Power grade coal	Talcher
Concealed Coalfields	Tertiary age coal	Cambay basin
		Barmer Sanchor basin*
	Power grade coal	West Bengal Gangetic Plain
	-	Birbhum, Domra Panagarh,
		Wardha Valley Extension, Kamptee
		basin Extension

Coalfields	Basic par (mmf	Virinite reflectance	
	VM(%)	FC(%)	R _o (%)
East Bokaro	28-36	85-90	0.85-1.05
South Karanpura	37-40	80-84	0.60-0.80
Jharia –Barakar	17-35	87-93	0.90-1.30
Raniganj	39-44	79-90	0.70-0.85
Rajmahal-Barakar	38-40	78-81	0.45-0.50
Singrauli- Barakar	37-45	78-81	0.45-0.50
Sohagpur	34-40	80-87	0.55-0.65
Pench valley	32-40	82-89	0.50-0.60
Wardha valley	35-40	78-82	0.55-0.60
Godavari Valley	35-42	78-83	0.55-0.60
Talcher	35-45	79-82	0.50-0.55

Proximate analysis and rank of unmineable and grey area coalbeds

Proximate analysis and rank of concealed coalbeds

Coalfields	Basic par	Virinite		
	(mmf basis)		reflectance	
	VM(%)	FC(%)	R₀(%)	
Cambay basin	45-58	52-68	0.32-0.44	
Barmer	47-60 48-66		0.26-0.40	
Sanchor Basin				
Birbhum	16-38	68-86	1.10-1.86	
Wardha valley	24-35	72-88	0.54-0.68	
Kamptee	26-36 75-92		0.52-0.66	
Kanhan valley				

UNMINEABLE COAL RESERVE AND CO₂ STORAGE CAPACITY

Coalfield	Estimated	Coal	CO ₂	CO ₂	CO ₂
	adsorption capacity	Reserve	storage	storage	storage
	of CO ₂		capacity	capacity	capacity (90%)
	(m³/t)	(Mt)	(Bm³)	(Mt)	(Mt)
Singrauli	Average 20.0	37.0	0.74	1.46	1.32
Mand Raigarh	Range 16.0-23.0 Average 19.0	79.0	1.50	2.97	2.67
Talcher	Range 17.2-24.8 Average 20.4	1017.0	20.80	41.18	37.06
Godavari	Range 16.8-22.2 Average 19.2	1976.0	38.02	75.28	67.75

ESTIMATED CO₂ ADSORPTION CAPACITY IN GREY AREA COALBEDS

Coalfield	Estimated CO ₂ adsorption capacity	Cumulative Coal seam thickness	Block Area	Coal Reserve	CO ₂ storage capacity	CO ₂ storage capacity	CO ₂ storage capacity (90%)
	(m ³ /t)	(m)	(km ²)	(Bt)	(Bm ³)	(Mt)	(Mt)
South	Range	73.0	76.0	0.75	18.35	36.33	32.70
Karanpura	19.5-28.0						
	mean 24.5						
East	Range	100.0	113.0	1.53	42.90	84.94	76.45
Bokaro	22.3-33.5						
	mean 28.1						
Jharia	Range	40.0	193.0	1.04	35.96	71.20	64.08
	22.0-56.0						
	mean 34.5						
Raniganj	Range	30.0	240.0	0.97	23.33	46.19	41.57
	20.8-29.0						
	mean 24.0						
Sohagpur	Range	15.0	450.0	0.91	20.59	40.76	36.69
	18.9-26.4						
	mean 22.6						
Talcher	Range	120.0	149.0	2.41	49.24	97.49	87.75
	17.2-24.8						
	mean 20.4						

CONCEALED AREA COAL RESERVE AND CO₂ STORAGE CAPACITY

Coalfield	Estimated	Cumulative	Area of the	Coal	CO ₂ storage	CO ₂ storage	CO ₂ storage
	adsorption	Thickness of	block	reserve	capacity	capacity	capacity (90%
	capacity	coal seams			,	,	
	(m ³ /t)	(m)	(km²)	(Bt)	(Bm ³)	(Mt)	(Mt)
mbay basin	Range	102.0	6900	63.0	1057.81	2094.45	1885.02
	13.8-19.6						
	average 16.7						
rmer Sanchor	Range	100.0	6700	60.0	936.00	1853.28	1667.95
sin	128-18.4						
	average 15.6						
B. Gangetic	Range			7.2	131.76	260.88	234.80
in	16.4-23.2						
	average 18.3						
bhum coalfield	Range	100.0	312.0	4.2	85.08	168.46	151.61
	17.2-24.8						
	average 20.2						
mra Panagarh	Range	48.0	116.0	0.751	16.39	32.45	29.20
	18.6-25.8						
	average 21.8						
rdha Valley	Range	13.0	212.0	0.37	6.62	13.11	11.80
ension	15.7-22.8						
	average 17.8						
nptee	Range	14.0	300	0.57	9.81	19.42	17.48
ension	7.2-9.2						
	average 8.1						

Conclusions

- Indian coalbed are classified into grey, concealed and unmineable based on its depth of occurrence and grade characteristics.
- CO₂ storage potential in Indian coalbeds is estimated to be 4459 Mt.

Thank You Very Much

drdmohanty@ymail.com +91 9471304757