

CO₂ Recovery From Power Plants by Adsorption: Issues, Challenges and Approaches

Awareness and Capacity Building in Carbon Capture and Storage: Earth Processes, (ACBCCS-2013) New Delhi 16th January 2013

> Presented by Anshu Nanoti

CSIR- INDIAN INSTITUTE OF PETROLEUM, DEHRADUN

Reserves to Production Ratios (R/P)

Fossil fuel reserves-to-production (R/P) ratios at end 2010 Years

Coal remains the most abundant fossil fuel by global R/P ratios, though oil and natural gas proved reserves have generally risen over time. Non-OECD countries account for 93.4% of the world's proved oil reserves; 90.9% of natural gas reserves, and 56% of coal reserves. The Middle East holds the largest share of proved oil and natural gas reserves; Europe and Eurasia hold a significant share of the world's natural gas and the largest coal reserves. Asia and North America also hold substantial coal reserves.

INDIA'S ENERGY BASKET

Fossil Fuel	Reserves	Production	R/P
Coal	92.0 bT	322 mT/A	286.00
Gas	22.8 tcf	752 bcf/A	30.00
Petroleum	5.40 bbl	0.643 mbl/D	15.00

Reserve / Production (R/P)Ratio

COAL CRUDE OIL NATURAL GAS

Coal abundance will lead to it being the major Contributor in power generation in the coming decades

Global CO₂ Emissions

- •The World economies emit approximately 30 gigatons of CO₂ (Gt CO₂) to the atmosphere annually
- In the absence of explicit efforts to address climate change and increased demand for energy,
 CO₂ emission is projected to rise
 to as much as
 9000 Gt over this coming century
- •As per UN Framework Convention on Climate Change, cumulative CO₂ emissions need to be held to not more than 2600 GtCO₂ to 4600 GtCO₂

Sources of CO₂ Emissions

Stabilisation of Atmospheric CO₂ Levels

What are the Options

- **Reduce Energy Use, Improve efficiency of production**
- Switch to Different Fuels
 - Natural Gas in Place of coal
 - Renewable Energy
 - Nuclear Power
 - Sequester CO_2
 - -Natural Storage for CO₂
 - Capture and store CO₂

Carbon Capture and Sequestration

- CCS offers opportunity to meet increasing demand for fossil fuel usage in short to medium term while reducing associated GHG
- CCS complements strategies to meet global warming like
 - Improve energy efficiency
 - Switch to lesser carbon intensive fuels
 - Phase in usage of renewables

CO₂ Sequestration

CO₂ Sequestration Involves

- Capture
- Transport
- Storage of CO₂ in Geological Formations

Pre-Combustion CO₂ Capture

Coal fired power plant

Pre-Combustion CO₂ Capture

- Advantages:
- Generally high CO2 concentration than for post combustion capture
- High pressure
 - More compact size of the equipment
 - High driving force for CO2 capture
- 90-95% of CO2 emissions can be captured.
- Can produce H₂ as transportable energy vector, or liquid fuels from coal but penalties on efficiency
- Disadvantages:
- Requires a chemical plant in front of gas turbine
- High investment cost of dedicated new-build plant.
- High NOx emissions will require expensive scrubbers.
- Efficiency of H₂ burning turbines is lower than conventional turbines.

Creating Future **Acid Gas Removal in Gasification:** Fuels **Conventional Processes Sour Water Gas Shift** Gasification Gasification 800 °C 800 °C **Gas Cleanup** Gas Cleanup 150 °C 150 °C Sulphur Removal **Sweet** Sour WGS Water Gas 40 °C 250 °C Shift Sweet WGS 400 °C CO2 and Sulphur GTCC Removal 320 °C 40 °C

400 °C

GTCC

CO₂ Removal

40 °C

Acid Gas Removal in Gasification

•Acid gas removal is carried out at low temperature (40 °C)

•This involves several steps of cooling and re-heating of syn gas in both sour WGS and sweet WGS routes

•These temperature swings lead to over all thermal lower efficiency of the process

High temp acid gas removal
Membrane reactors
Sorption enhanced water gas shift

Acid Gas Removal in Gasification: New Trends

Expected Benefits

P

- CO₂ mitigation
- High purity hydrogen production with higher recoveries
- Reduced equipment costs
- High temp. desulphurisation (370-480 C in a 600 MW IGCC plant)

PRECOMBUSTION

Associated Challenges

•Gas at high temperature contains both CO2 and H2S

•Large temperature swings necessary in treatment train for CO_2 and H_2S removal ,shift reactions , leads to high energy costs

Enabling R & D

- •Develop high temperature CO₂ selective adsorbents
- •Develop high temperature H₂S selective adsorbents
- •Develop dual function adsorbents for simultaneous removal of CO_2 and H_2S at high temperature
- •Develop adsorbent membranes for selective CO₂ removal in Shift Reactor

For the development of adsorption process Heart of the process is

Desirable Characteristics

Potential Sorbents for High Temperature CO₂ removal

Possible candidates:

- Magnesium Oxide
- Calcium Oxide
- Titanosilicates
- HTLc (k-promoted)
- Lithium Aluminate
- Lithium Ferrite
- Lithium Titanate

Especially promising:

- Lithium Zirconates
- Lithium Silicates
- Eutectic Salt Promoted Lithium Zirconates/Silicates
- Precipitated Calcium Oxide/Calcium Carbonate

Typical Capacities of Commercial and Developmental CO₂ Selective Adsorbents

Adsorbents	Temperature ^o C	Loading mol/kg
Activated carbon	250-300	0.1-0.2
5A zeolite	250	0.2
Titanosilicates	24-200	proprietary
HTlc (K promoted)	300-400	0.4-0.7
Double layer hydroxide	375	1.5
Li-Zirconate	500	3.4-4.5
CaO	500	4 to 8

Adsorbents for H₂S Removal

- ZnO
- ZnO-TiO2
- ZnO-TiO2, Zinc Ferrite
- Zinc titanate doped manganese oxide
- CeO2 + La, Cu
- Titanium supported cobalt titanate coupled with Zinc aluminate supported Zinc oxide
- ZnO coated monolith

Adsorbents for CO₂ and Sulphur (H₂S, COS) Removal

Adsorbent	Temperature °C	CO2 adsorbed mol/kg	H2S Adsorbed mol/kg	NH3 adsorbed mol/kg	Remarks
13X zeolite	200	0.67	1.85	4.0	H2S loads and unloads reversibly NH3 strongly loads, TSA required for regeneration
НТС	300	0.20	1.79	0.02	H2S regeneration difficult
Mg-Na DS	375	4.70	1.74		H2S regeneration difficult

Hot Gas Clean up in Clean Coal Technology Development

CSIR Project under Clean Coal Mission Programme

Objectives

To develop high temperature adsorbents for simultaneous removal of CO2 and H2S at high temperature and pressure

Challenges

To develop Selective adsorbent capable of simultaneously removing both CO2 and H2S at elevated temperatures
Regenerability,cyclic stability
Thermal stability

Technology Development for Clean Coal

Adsorbent Synthesis and Screening

Hydrotalcite, Calcium oxide and mixed oxides are being synthesised and evaluated in high temp

Element

0 K

MgK

AlK

KK

Wt %

60.05 23.13

14.54

02.28

At %

17.94

10.16

01.10

Process Cycle Development

Fixed bed cyclic process is being tested under varying operating conditions

Adsorbent Synthesis

High Temperature Sorbent Development at IIP

Adsorbent development work at IIP is focused on hydrotalcites

- Only hydrotalcites showed appreciable capacity of CO₂ in the targeted temperature window of 300-400 °C
- Hydrotalcites are regenerable at temp. 450-470 °C i.e. temperature swing requirement for regeneration is small
- Hydrotalcites are open to physical and chemical manipulation
 - Numerous combinations of structural cations and interlayer charge-compensating anions possible
- Possibility of CO₂ capacity enhancement by such chemical manipulations
- Possibility of integrating both CO₂ and H₂S sorbing functionality into the structure of hydrotalcites

•Other high temperature sorbents such as Lithium Zirconates, Lithium Silicates though have higher CO₂ capacity (4-6 moles/kg) but appreciable uptake occurs at temperature > 450 °C

•These sorbents also require much higher regeneration temperature 650-800 °C

Evaluation of Hydrotalcite Adsorbents

Equilibrium Isotherm Measurements (Temp. 300-400 °C) Using HIDEN Gravimetric Analyzer

HT prepared by Coprecipitation Route

Promotional Effect of K₂CO₃ Impregnation on CO₂ Capacity of a Hydrotalcite Prepared by Co-Precipitation Route

Promotional Effect of K₂CO₃ Impregnation on eqm. CO₂ uptake is Temperature Dependent

Successive CO₂ Breakthrough Experiments at 400 °C and 12 bar Pressure

No appreciable deterioration in breakthrough capacity observed over repeated sorption-desorption cycles

Single Column Adsorber
Microprocessor based
Max. Temp: 500
Flexibility to evaluate different PSA.VSA cycles

Regeneration Studies

Optimization of Inert Purge Requirement for Adsorbent Regeneration

Creating Future

uels

Significant reduction in regenerant requirement was observed with small drop in breakthrough capacity

Round Up

- CO₂ capacity of IIP sorbents are comparable to the best reported values for similar class of high temperature sorbents (Ref: FP-7 EU CAESAR Prog.)
- A correlation exists between equilibrium CO₂ capacity with surface area of hydrotalcite based sorbents
- A temperature dependent promotional effect of K₂CO₃ impregnation on CO₂ uptake has been observed
- Highest CO₂ uptake in the temperature range 350-400 °C for the promoted adsorbent
- Adsorbents are regenerable under inert purge with or without evacuation at ~450 °C
- This indicates a small temperature swing of 50-100 °C will be required for adsorbent regeneration
- No appreciable loss in breakthrough capacity was observed over multiple cycles of adsorption-regeneration

Post Combustion Capture

R & D Challenges in CO₂ Capture by Adsorption

POST COMBUSTION

Associated Challenges

- •Low capacity of available adsorbents
- •Moisture in flue gas
- •SOx, NOx contaminants
- •Low flue gas pressure, low CO₂ partial pressure
- •Very large flue gas flows

Enabling R & D

-Improve adsorbent capacity >20 wt%
Develop very large Surface area
(>5000m²/gm)adsorbents such as MOF
Improve moisture , SOx and NOx tolerance
of such MOFs
Process intensification :
 Use structured adsorbents
Process intensification :
 Use RPSA
Develop improved process cycles to
reduce power costs to < 0.1Kwhr/Kg CO₂
removed

Metal Organic Framework Adsorbent

- MOF are new class of adsorbent material with strong potential for CO2 adsorption
- Generally consisting of two building elements: inorganic coupling units and organic linkers
- Highly porous with large surface area
- Pore size and functionality can be tailored

Properties to exploit <u>similarities to molecular sieves</u>:

- synthesis conditions
- good yields
- crystalline
- -tunable hydrophil(phob)icity and acid(basic)ity

differences from molecular sieves

- lower temp stability (up to 450 oC reported)

:y

- much higher SA/ PV
- more unobstructed gas diffusion
- much more diverse chemistry
- many more metals/ metal clusters available
 organic linkers can contain functionality

Objective and Scope of Work

To evaluate performance of MOF for capture of CO₂ from flue gas

Process Optimisation ,Simulation modelling

Adsorbent Screening & Evaluation

Adsorbents were screened on the basis of

- Isotherms
- Breakthrough Measurements in Single Column Microadsorber Unit
- Desorption Breakthrough Measurements
- Breakthrough Measurements in Presence of Moisture
- Single Column PSA Studies

Comparison of Equilibrium Isotherm Data

Adsorption Isotherm on Zeolite Z-

Adsorbent Selectivity for CO2-N2 at I	
bar	

Zeolite Z-10-04	MOF- UIO-66
40.0	13.2

Adsorption Isotherm on MOF UIO-66 at 303 K

MOF Capacity for CO₂ is lower than zeolite in the pressure range of interest Deciding Factor will be regenerability !

Breakthrough Measurements

Comparison of CO₂ breakthrough of MOF and Zeolite

Feed Comp: 15 mol% CO₂ in N₂ Temp: 303 K Feed Flow Rate: 0. 26 NLPM Adsorber Col dia: 1.1 cm Adsorbent loading: 5 gms

Sharper Breakthrough curves with MOF

Better adsorption kinetics are indicated

Could impact adsorbent regenerability

Regeneration Studies

Comparison of Regeneration Curves

VSA Cycle Studies

Single Column VSA Cycle Studies

- Six step VSA Cycle was used in the single column microadsorber
 - Feed pressurisation
 - Adsorption
 - Blowdown
 - Cocurrent CO2 rinse
 - Countercurrent Nitrogen purge
 - Countercurrent Evacuation with Nitrogen purge
- Pure nitrogen was used as countercurrent purge
- Pure CO2 was used as cocurrent rinse

- •Feed 15% CO2 in nitrogen
- •Feed flow :0.26 NLPM
- •Pressure , high: 1.5 bar
- •Pressure ,low: 0.1 bar
- •Temperature :55C

Single Column PVSA Cycle Steps

Creating

uture

Effect of Adsorption Cycle Time on Performance

At minimum cycle time CO2 purities are higher with zeolite but recoveries are lower

Cyclic Stability of MOF for CO₂ Recovery

•CO₂ concentrations in product remain constant up to 40 PSA cycles studied

•No deterioration in the adsorbent performance observed

•UIO -66 shows good cyclicity over a large number of PSA cycles

Conclusion

- MOF UIO-66 has been compared with a commercial zeolite for CO2 separation from mixtures with N2.
- The MOF shows lower capacities and selectivities than the zeolite for this separation
- CO2 purities observed in single column PSA studies are higher with zeolite
- The regenerability with MOF appears better leading to higher CO2 recoveries
- Long term cycle stability is observed with MOF
- Minimal Loss in capacity is observed with MOF but this capacity loss appears to get stabilised

THANK YOU

