2D-NMs PHOTOCATALYST HYDROGEN EVOLUTION

S. Ahmad

Jamia Hamdard, New Delhi

CLIMATE CHANGE – MAJOR PROBLEMS MITIGATING CO₂ EMISSION & RENEWABLE FUEL

Reduce CO, Emissions Conversion into Fuels/Chemicals, **Produce H**, - Photocatalytic Conversion Efficient & Affordable Photocatalysts A Necessary – Development

WHY HYDROGEN FUEL?

S. No.	Fuel	MJ/Kg
1.	Liquid Hydrogen	130
2.	Aviation Gasoline	46.8
3.	Premium Gasoline/Petrol	46
4.	Regular Gasoline/Petrol	47
5.	Jet Fuel (Kerosene)	47
6.	Jet Fuel (Naphtha)	46.6
7.	Diesel	48
8.	Biodiesel	39.9
9۰	Liquefied Natural Gas	55
10.	E85 (85:15:: ethanol : gasoline)	~33
11.	Ethanol	31.1
12.	Methanol	19.9
13.	Vegetable Oil	37.7
14.	Gasohol (10:90:: ethanol : gasoline)	~45
15.	Liquid Petroleum Gas (LPG)	~51

Exploring 2D-Nanomaterials ? Adjustable Charge Carrier Transport Carrier Lifetime...

OPTIMAL PHOTOCATALYST

Appropriate Band-Gap Semiconductor **Right Positioning – CONDUCTION/VALENCE Band** Satisfying – REDOX (Reduction & Oxidation) CB/VB – More -ve/+ve – H₂O Redox Potential ENERGY BG \geq 1.23 eV – H₂O Split - H, and O,

$h\nu \longrightarrow$ Chemical Energy $H_2O \longrightarrow H_2 + 1/2O_2$

Efficiency – Semiconductor Band Structure

Efficient H₂ production - Visible-light-driven Semiconductors - Bandgap - 1.23–3.0 eV

TWO-DIMENSIONAL NANOMATERIALS

Since Discovery of Graphene from Graphite Exploration of 2D-NMs Intensified Planar (Graphene), Quasi-planar Other NSs Form Family of Designer's Nanomaterials Programmable Structure/Energy Band Gaps

G-C3N4 GRAPHITIC CARBON NITRIDE

G-C₃N₄-HETEROSTRUCTURE - PROBLEMS

- Design of Band Structure Alignment
- Positioning for REDOX Reaction
- Enhancement of Efficiency
- Cost Effective Precursors

MELAMINE - PRECURSOR

DESIGN OF HETEROSTRUCTURES

Cu₂O/g-C₃N₄,
Graphene / g-C₃N₄,
CdS / gC₃N₄,
TiO₂ / g-C₃N₄.
Untreated g-C₃N₄ / Sulfidized g-C₃N₄

H₂ FUEL CELL POWERED CAR

attic.energygov

CHALLENGES

- Durability/Stability & Efficient Recycling
- Better Precursors Critical Decision
- Newer Heterojunction & Homojunction Needed
- Carbonaceous Semiconductors

Metal and Non-metal Doping, Defects, and Interaction Mechanisms of Multiple Functions – **Optimal Hydrogen Production and Cost Effective Catalyst**

CONCLUSIONS

2D–Semiconductor Nanosheets **Appropriate Photocatalyst** With Adjustable Parameters **Rugged System Possible Right Kind of Precursor and Processing – Necessary Opportunities – Almost Unlimited**